example_mha_sink_fwd_bhsd.py 13.2 KB
Newer Older
1
2
3
4
5
6
7
# Modified from tilelang/examples/flash_attention/example_mha_fwd_bhsd.py

import torch
import tilelang
from tilelang.autotuner import autotune
from tilelang.profiler import do_bench
import tilelang.language as T
8
from tilelang.layout import make_swizzled_layout
9
10
import itertools
import argparse
11
from typing import Optional
12
13
14
15
16
17
18
19
20


def get_configs():
    iter_params = dict(block_M=[128], block_N=[128], num_stages=[0, 1, 2], threads=[128, 256])
    return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]


@autotune(configs=get_configs(), warmup=500, rep=100)
@tilelang.jit(
21
    out_idx=[3], pass_configs={
22
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
23
    })
24
25
26
27
28
29
30
def flashattn(
        batch,
        heads,
        seq_q,
        seq_kv,
        dim,
        window_size=None,  # None for full attention
31
        sm_scale=None,
32
33
34
        block_M=64,
        block_N=64,
        num_stages=1,
35
36
        threads=128,
        dtype: str = "float16"):
37
38
39
    if window_size is not None:
        assert window_size % block_N == 0, "window_size must be divisible by block_N"

40
41
42
    if sm_scale is None:
        sm_scale = (1.0 / dim)**0.5
    scale = sm_scale * 1.44269504  # log2(e)
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    q_shape = [batch, heads, seq_q, dim]
    kv_shape = [batch, heads, seq_kv, dim]
    accum_dtype = "float"

    past_len = seq_kv - seq_q
    assert past_len >= 0, "seq_kv must be greater than or equal to seq_q"

    @T.macro
    def MMA0(
        K: T.Tensor(kv_shape, dtype),
        Q_shared: T.SharedBuffer([block_M, dim], dtype),
        K_shared: T.SharedBuffer([block_N, dim], dtype),
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
        k: T.int32,
        bx: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
        T.copy(K[bz, by, k * block_N:(k + 1) * block_N, :], K_shared)
        for i, j in T.Parallel(block_M, block_N):
            q_idx = bx * block_M + i + past_len
            k_idx = k * block_N + j
            if window_size is not None:
                acc_s[i, j] = T.if_then_else(q_idx >= k_idx and q_idx < k_idx + window_size, 0,
                                             -T.infinity(acc_s.dtype))
            else:
                acc_s[i, j] = T.if_then_else(q_idx >= k_idx, 0, -T.infinity(acc_s.dtype))
        T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def MMA1(
        V: T.Tensor(kv_shape, dtype),
        V_shared: T.SharedBuffer([block_M, dim], dtype),
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
        k: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
        T.copy(V[bz, by, k * block_N:(k + 1) * block_N, :], V_shared)
        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def Softmax(
            acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
            acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
            scores_max: T.FragmentBuffer([block_M], accum_dtype),
            scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
            scores_scale: T.FragmentBuffer([block_M], accum_dtype),
            scores_sum: T.FragmentBuffer([block_M], accum_dtype),
            logsum: T.FragmentBuffer([block_M], accum_dtype),
    ):
        T.copy(scores_max, scores_max_prev)
        T.fill(scores_max, -T.infinity(accum_dtype))
        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
        # To do causal softmax, we need to set the scores_max to 0 if it is -inf
        # This process is called Check_inf in FlashAttention3 code, and it only need to be done
        # NOTE(wt): check_inf is necessary for sliding window attention.
        for i in T.Parallel(block_M):
            if window_size is not None:
                scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0,
                                               scores_max[i])
            scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)

        for i, j in T.Parallel(block_M, block_N):
            # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            # max * log_2(e)) This allows the compiler to use the ffma
            # instruction instead of fadd and fmul separately.
            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
        T.reduce_sum(acc_s, scores_sum, dim=1)
        for i in T.Parallel(block_M):
            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
        T.copy(acc_s, acc_s_cast)

    @T.macro
    def Rescale(
            acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
            scores_scale: T.FragmentBuffer([block_M], accum_dtype),
    ):
        for i, j in T.Parallel(block_M, dim):
            acc_o[i, j] *= scores_scale[i]

    @T.prim_func
    def main(
            Q: T.Tensor(q_shape, dtype),
            K: T.Tensor(kv_shape, dtype),
            V: T.Tensor(kv_shape, dtype),
            Output: T.Tensor(q_shape, dtype),
            Sinks: T.Tensor([heads], dtype),
    ):
        with T.Kernel(T.ceildiv(seq_q, block_M), heads, batch, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([block_M, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)
            sinks = T.alloc_fragment([block_M], dtype)

148
149
150
151
152
153
154
            T.annotate_layout({
                Q_shared: make_swizzled_layout(Q_shared),
                K_shared: make_swizzled_layout(K_shared),
                V_shared: make_swizzled_layout(V_shared),
                O_shared: make_swizzled_layout(O_shared),
            })

155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
            T.copy(Q[bz, by, bx * block_M:(bx + 1) * block_M, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
            for i in T.Parallel(block_M):
                sinks[i] = Sinks[by]

            end = T.min(
                T.ceildiv(seq_kv, block_N), T.ceildiv((bx + 1) * block_M + past_len, block_N))

            start = T.alloc_local([1], 'int32')
            if window_size is not None:
                start[0] = T.max(0, (bx * block_M + past_len - window_size) // block_N)
            else:
                start[0] = 0

            for k in T.Pipelined(start[0], end, num_stages=num_stages):
                MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz)
                Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale, scores_sum,
                        logsum)
                Rescale(acc_o, scores_scale)
                MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz)
            for i in T.Parallel(block_M):
                logsum[i] += T.exp2(sinks[i] * 1.44269504 -
                                    scores_max[i] * scale)  # The only change for attention sink
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
            T.copy(O_shared, Output[bz, by, bx * block_M:(bx + 1) * block_M, :])

    return main


# Modified from https://github.com/openai/gpt-oss/blob/main/gpt_oss/triton/attention.py
def ref_program(query: torch.Tensor,
                key: torch.Tensor,
                value: torch.Tensor,
                sinks: torch.Tensor,
193
194
                sliding_window: Optional[int] = None,
                dtype: torch.dtype = torch.float16) -> torch.Tensor:
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232

    query = query.transpose(1, 2).contiguous().unsqueeze(
        3)  # align with the original function's interface
    key = key.transpose(1, 2).contiguous()
    value = value.transpose(1, 2).contiguous()

    batch_size, num_queries, num_key_value_heads, num_key_value_groups, head_dim = query.shape
    batch_size, num_keys, num_key_value_heads, head_dim = key.shape
    start_q = num_keys - num_queries

    sm_scale: float = 1.0 / head_dim**0.5

    sinks = sinks.view(1, num_key_value_heads, num_key_value_groups, 1, 1).float()
    key = key.unsqueeze(3)
    value = value.unsqueeze(3)

    pos_keys = torch.arange(num_keys, device=query.device)
    pos_queries = torch.arange(num_queries, device=query.device) + start_q
    mask = pos_keys[None, :] > pos_queries[:, None]
    mask = mask.float().masked_fill(mask, float("-inf"))

    if sliding_window:
        too_old = pos_keys[None, :] < (pos_queries[:, None] - sliding_window + 1)
        mask.masked_fill_(too_old, float("-inf"))

    logits = torch.einsum("bqhmd,bkhmd->bhmqk", query.float(), key.float()) * sm_scale
    logits = logits + mask[None, None, None, :, :]

    logits_max = torch.max(logits, dim=-1, keepdim=True).values
    logits_or_sinks_max = torch.maximum(sinks, logits_max)
    sinks = torch.exp(sinks - logits_or_sinks_max)
    unnormalized_scores = torch.exp(logits - logits_or_sinks_max)
    normalizer = unnormalized_scores.sum(dim=-1, keepdim=True) + sinks
    scores = unnormalized_scores / normalizer

    output = torch.einsum("bhmqk,bkhmd->bqhmd", scores, value.float())

    output = output.reshape(batch_size, num_queries, num_key_value_heads * num_key_value_groups,
233
                            head_dim).to(dtype)
234
235
236
    return output.transpose(1, 2).contiguous()


237
238
239
240
241
242
243
244
245
246
247
def gen_inputs(
        B,
        H,
        Sq,
        Skv,
        D,
        dtype=torch.float16) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
    query = torch.randn([B, H, Sq, D], dtype=dtype, device='cuda')
    key = torch.randn([B, H, Skv, D], dtype=dtype, device='cuda')
    value = torch.randn([B, H, Skv, D], dtype=dtype, device='cuda')
    sinks = torch.randn([H], dtype=dtype, device='cuda')
248
249
250
    return query, key, value, sinks


251
252
253
254
def main(batch: int = 1,
         heads: int = 1,
         seq_q: int = 256,
         seq_kv: int = 256,
255
256
         dim: int = 128,
         window_size: int | None = None,
257
         dtype: str = "float16",
258
         tune: bool = False):
259
    torch_dtype = {"float16": torch.float16, "bfloat16": torch.bfloat16}[dtype]
260
261
262
263
264
265
266
267
268
269
270
    if window_size is not None:
        print('Using sliding window attention.')
        assert window_size <= seq_q
        flops_per_matmul = 2.0 * batch * heads * min(
            window_size, seq_kv // 2) * seq_q * dim  # just a rough estimation
    else:
        print('Using full attention.')
        flops_per_matmul = 2.0 * batch * heads * seq_q * seq_kv * dim * 0.5
    total_flops = 2 * flops_per_matmul

    if tune:
271
        kernel = flashattn(batch, heads, seq_q, seq_kv, dim, window_size, dtype=dtype)
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
        print(f"Best latency: {kernel.latency}")
        print(f"Best TFlops: {total_flops / kernel.latency * 1e-9}")
        print(f"Best config: {kernel.config}")
    else:
        block_M = 128
        block_N = 128
        num_stages = 2
        threads = 256
        print(f"{block_M=}, {block_N=}, {num_stages=}, {threads=}")

        kernel = flashattn(
            batch,
            heads,
            seq_q,
            seq_kv,
            dim,
            window_size,
            block_M=block_M,
            block_N=block_N,
            num_stages=num_stages,
292
293
            threads=threads,
            dtype=dtype)
294

295
        Q, K, V, sinks = gen_inputs(batch, heads, seq_q, seq_kv, dim, dtype=torch_dtype)
296
297

        torch.testing.assert_close(
298
299
300
301
            kernel(Q, K, V, sinks),
            ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype),
            rtol=1e-2,
            atol=1e-2)
302
303
        print("All checks passed.✅")

304
305
        latency = do_bench(
            lambda: ref_program(Q, K, V, sinks, window_size, dtype=torch_dtype), warmup=500)
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
        latency = do_bench(lambda: kernel(Q, K, V, sinks), warmup=500)
        print("Tilelang: {:.2f} ms".format(latency))
        print("Tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='batch size')
    parser.add_argument('--heads', type=int, default=32, help='heads')
    parser.add_argument('--seq_q', type=int, default=4096, help='sequence length of query')
    parser.add_argument('--seq_kv', type=int, default=4096, help='sequence length of key/value')
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument(
        '--window_size',
        type=int,
        default=None,
        help='window size (default: None, which means full attention)')
325
326
    parser.add_argument(
        '--dtype', type=str, default="float16", help="dtype, can be float16 or bfloat16")
327
328
    parser.add_argument('--tune', action='store_true', help='tune')
    args = parser.parse_args()
329
330
    main(args.batch, args.heads, args.seq_q, args.seq_kv, args.dim, args.window_size, args.dtype,
         args.tune)