gemm_sm90.h 24.6 KB
Newer Older
1
2
#pragma once

3
#include <cute/arch/mma_sm80.hpp>
4
5
#include <cute/arch/mma_sm90.hpp>
#include <cute/atom/mma_atom.hpp>
6
7
#include <cutlass/arch/barrier.h>
#include <cutlass/cutlass.h>
8
#include <cutlass/gemm/collective/collective_builder.hpp>
9
10
11
12
13

#include "common.h"

namespace cute {

14
15
using namespace SM90;

16
namespace tl_wgmma {
17
18

using namespace cutlass::gemm::collective::detail; // ss_smem_selector
19

20
template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
21
22
          bool trans_B, bool clear_accum, typename A_type_raw,
          typename B_type_raw, typename C_type_raw>
23
class GemmTensorOp {
24
25
26
27
28
public:
  using A_type = conditional_t<std::is_same<A_type_raw, float>::value,
                               tfloat32_t, A_type_raw>;
  using B_type = conditional_t<std::is_same<B_type_raw, float>::value,
                               tfloat32_t, B_type_raw>;
29
30
  using C_type = C_type_raw;

31
32
33
34
  static constexpr GMMA::Major GmmaMajorA =
      trans_A ? GMMA::Major::MN : GMMA::Major::K;
  static constexpr GMMA::Major GmmaMajorB =
      trans_B ? GMMA::Major::K : GMMA::Major::MN;
35

36
  using SmemLayoutAtomA =
37
      decltype(ss_smem_selector<GmmaMajorA, A_type, Int<M>, Int<K>>());
38
  using SmemLayoutAtomB =
39
      decltype(ss_smem_selector<GmmaMajorB, B_type, Int<N>, Int<K>>());
40

41
42
43
44
45
46
  using SmemLayoutA = decltype(tile_to_shape(
      SmemLayoutAtomA{}, Shape<Int<M>, Int<K>>{},
      conditional_t<trans_A, Step<_2, _1>, Step<_1, _2>>{}));
  using SmemLayoutB = decltype(tile_to_shape(
      SmemLayoutAtomB{}, Shape<Int<N>, Int<K>>{},
      conditional_t<trans_B, Step<_1, _2>, Step<_2, _1>>{}));
47

48
49
  static_assert(num_warp_m % 4 == 0,
                "num_warp_m must be a multiple of 4 for hopper wgmma");
50

51
52
  template <int wg_wait = 0>
  static CUTE_DEVICE void body(A_type_raw *pA, B_type_raw *pB, C_type_raw *pC) {
53
    const int tid = threadIdx.x;
54
55
56
57
58
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    auto tiled_mma = make_tiled_mma(
59
60
        GMMA::ss_op_selector<
            A_type, B_type, C_type,
61
            Shape<Int<4 * M / num_warp_m>, Int<N / num_warp_n>, Int<K>>,
62
            GmmaMajorA, GmmaMajorB>(),
63
        Layout<Shape<Int<num_warp_m / 4>, Int<num_warp_n>, _1>>{});
64
65
66
    auto thr_mma = tiled_mma.get_thread_slice(tid);

    // Allocate registers for pipelining
67
68
    Tensor tCsA = thr_mma.partition_A(sA); // (MMA,MMA_M,MMA_K,PIPE)
    Tensor tCsB = thr_mma.partition_B(sB); // (MMA,MMA_N,MMA_K,PIPE)
69

70
71
    Tensor tCrA = thr_mma.make_fragment_A(tCsA); // (MMA,MMA_N,MMA_K,PIPE)
    Tensor tCrB = thr_mma.make_fragment_B(tCsB); // (MMA,MMA_M,MMA_N,PIPE)
72

73
74
75
    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
76
77
78

    warpgroup_fence_operand(acc);
    warpgroup_arrive();
79
80
81
    if constexpr (clear_accum) {
      tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
    }
82
83
84
85
86
87
88
89
90
    CUTLASS_PRAGMA_UNROLL
    for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
      // warpgroup_arrive();
      // (V,M) x (V,N) => (V,M,N)
      gemm(tiled_mma, tCrA(_, _, k_block), tCrB(_, _, k_block), acc);
      tiled_mma.accumulate_ = GMMA::ScaleOut::One;
    }

    warpgroup_commit_batch();
91
92
93
    if constexpr (wg_wait >= 0) {
      warpgroup_wait<wg_wait>();
    }
94
95
96
    warpgroup_fence_operand(acc);
  }

97
98
99
  template <int wg_wait = 0>
  static CUTE_DEVICE void body_rs(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
100
    // TODO: Move bar.sync out of body_rs
101
102
    // asm volatile("bar.sync %0, %1;" : : "r"(1), "r"(num_warp_m * num_warp_n *
    // 32));
103
    const int tid = threadIdx.x;
104
105
106
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    auto tiled_mma = make_tiled_mma(
107
108
109
110
        GMMA::rs_op_selector<
            A_type, B_type, C_type,
            Shape<Int<M / (num_warp_m / 4)>, Int<N / num_warp_n>, Int<K>>,
            GmmaMajorA, GmmaMajorB>(),
111
        Layout<Shape<Int<num_warp_m / 4>, Int<num_warp_n>, _1>>{});
112
113
114
    auto thr_mma = tiled_mma.get_thread_slice(tid);

    // Allocate registers for pipelining
115
116
117
118
119
120
121
122
    Tensor tCsB = thr_mma.partition_B(sB);       // (MMA,MMA_N,MMA_K,PIPE)
    Tensor tCrB = thr_mma.make_fragment_B(tCsB); // (MMA,MMA_M,MMA_N,PIPE)
    Tensor tCrA =
        make_tensor(make_rmem_ptr(reinterpret_cast<A_type *>(pA)),
                    partition_shape_A(tiled_mma, Shape<Int<M>, Int<K>>{}));
    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
123

124
125
126
    warpgroup_fence_operand(tCrA);
    warpgroup_fence_operand(acc);
    warpgroup_arrive();
127
128
129
    if constexpr (clear_accum) {
      tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
    }
130
131
132
133
134
135
136
137
    CUTLASS_PRAGMA_UNROLL
    for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
      // warpgroup_arrive();
      // (V,M) x (V,N) => (V,M,N)
      gemm(tiled_mma, tCrA(_, _, k_block), tCrB(_, _, k_block), acc);
      tiled_mma.accumulate_ = GMMA::ScaleOut::One;
    }
    warpgroup_commit_batch();
138
139
140
    if constexpr (wg_wait >= 0) {
      warpgroup_wait<wg_wait>();
    }
141
142
143
144
145
    warpgroup_fence_operand(acc);
    warpgroup_fence_operand(tCrA);
  }
};

146
147
148
149
150
} // namespace tl_wgmma

namespace tl_mma {

template <typename A_type, typename B_type, typename C_type, int num_warp_m,
151
          int num_warp_n, int N>
152
153
154
155
156
struct DispatchInstruction;

using _X = Underscore;

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 800))
157
158
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, half_t, num_warp_m, num_warp_n, N> {
159
  using MMA = MMA_Atom<SM80_16x8x16_F16F16F16F16_TN>;
160
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
161
};
162
163
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n, N> {
164
  using MMA = MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>;
165
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
166
};
167
template <int num_warp_m, int num_warp_n, int N>
168
struct DispatchInstruction<bfloat16_t, bfloat16_t, float, num_warp_m,
169
                           num_warp_n, N> {
170
  using MMA = MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>;
171
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
172
};
173
template <int num_warp_m, int num_warp_n, int N>
174
struct DispatchInstruction<tfloat32_t, tfloat32_t, float, num_warp_m,
175
                           num_warp_n, N> {
176
  using MMA = MMA_Atom<SM80_16x8x8_F32TF32TF32F32_TN>;
177
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
178
};
179
180
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<int8_t, int8_t, int, num_warp_m, num_warp_n, N> {
181
  using MMA = MMA_Atom<SM80_16x8x32_S32S8S8S32_TN>;
182
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _X>;
183
};
184
185
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<double, double, double, num_warp_m, num_warp_n, N> {
186
187
188
189
  using MMA = MMA_Atom<SM80_8x8x4_F64F64F64F64_TN>;
  using MMA_Group = Tile<Int<num_warp_m * 16>, Int<num_warp_n * 16>, _X>;
};
#elif (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 750))
190
191
template <int num_warp_m, int num_warp_n, int N>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n, N> {
192
  using MMA = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
193
  using MMA_Group = Tile<_X, Int<std::min(num_warp_n * 16, N)>, _16>;
194
195
196
};
#endif

197
198
template <int Bits, int N, int K, bool K_inner, int num_warp_n,
          typename Enable = void>
199
200
201
202
203
204
205
206
207
208
209
struct OperandTraits {
  // Primary template, use padded layout and default copy
  static constexpr int stride = K_inner ? K : N;
  static constexpr int padded =
      stride % (256 / Bits) == 0 ? stride + 128 / Bits : stride;
  using Layout = typename std::conditional<
      K_inner, Layout<Shape<Int<N>, Int<K>>, Shape<Int<padded>, _1>>,
      Layout<Shape<Int<N>, Int<K>>, Shape<_1, Int<padded>>>>::type;
  using Copy = DefaultCopy;
};

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
template <int N, int num_warp_n, bool transpose> struct SelectCopy {
  static constexpr int remainder = (N / num_warp_n) % 16;
  using type = std::conditional_t<
      remainder == 4 || remainder == 8 || remainder == 0,
      std::conditional_t<
          transpose,
          std::conditional_t<
              remainder == 4, SM75_U32x1_LDSM_N,
              std::conditional_t<remainder == 8, SM75_U32x2_LDSM_N,
                                 SM75_U32x4_LDSM_N>>,
          std::conditional_t<
              remainder == 4, SM75_U16x2_LDSM_T,
              std::conditional_t<remainder == 8, SM75_U16x4_LDSM_T,
                                 SM75_U16x8_LDSM_T>>>,
      DefaultCopy>;
};

227
228
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, true, num_warp_n,
229
230
231
232
                     typename std::enable_if<K % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
233
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
234
235
};

236
237
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, true, num_warp_n,
238
239
240
241
                     typename std::enable_if<K % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
242
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
243
244
};

245
246
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, false, num_warp_n,
247
248
249
250
251
                     typename std::enable_if<N % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
252
  using Copy = typename SelectCopy<N, num_warp_n, false>::type;
253
254
};

255
256
template <int N, int K, int num_warp_n>
struct OperandTraits<16, N, K, false, num_warp_n,
257
258
259
260
261
                     typename std::enable_if<N % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_64, _8>, Stride<_1, _64>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
262
  using Copy = typename SelectCopy<N, num_warp_n, false>::type;
263
264
};

265
266
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, true, num_warp_n,
267
268
269
270
                     typename std::enable_if<K % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
271
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
272
273
};

274
275
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, true, num_warp_n,
276
277
278
279
                     typename std::enable_if<K % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_8, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
280
  using Copy = typename SelectCopy<N, num_warp_n, true>::type;
281
282
};

283
284
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, false, num_warp_n,
285
286
287
288
289
290
291
292
                     typename std::enable_if<N % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

293
294
template <int N, int K, int num_warp_n>
struct OperandTraits<32, N, K, false, num_warp_n,
295
296
297
298
299
300
301
302
                     typename std::enable_if<N % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_16, _8>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

303
304
template <int N, int K, int num_warp_n>
struct OperandTraits<8, N, K, true, num_warp_n,
305
306
307
308
                     typename std::enable_if<K % 128 == 64>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 4, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
309
310
  using Copy = typename std::conditional<N == 8 * num_warp_n, SM75_U32x2_LDSM_N,
                                         SM75_U32x4_LDSM_N>::type;
311
312
};

313
314
template <int N, int K, int num_warp_n>
struct OperandTraits<8, N, K, true, num_warp_n,
315
316
317
318
                     typename std::enable_if<K % 128 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 4, 3>{}, Layout<Shape<_8, _128>, Stride<_128, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
319
320
  using Copy = typename std::conditional<N == 8 * num_warp_n, SM75_U32x2_LDSM_N,
                                         SM75_U32x4_LDSM_N>::type;
321
322
};

323
324
template <int N, int K, int num_warp_n>
struct OperandTraits<64, N, K, true, num_warp_n,
325
326
327
328
329
330
331
                     typename std::enable_if<K % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 0, 4>{}, Layout<Shape<_4, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = DefaultCopy;
};

332
333
template <int N, int K, int num_warp_n>
struct OperandTraits<64, N, K, false, num_warp_n,
334
335
336
337
338
339
340
341
342
                     typename std::enable_if<N % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 2>{}, Layout<Shape<_16, _4>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = DefaultCopy;
};

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
343
344
          bool trans_B, bool clear_accum, typename A_type_raw,
          typename B_type_raw, typename C_type_raw>
345
346
347
348
349
350
351
352
353
class GemmTensorOp {
public:
  using A_type =
      typename std::conditional<std::is_same<A_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using B_type =
      typename std::conditional<std::is_same<B_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using C_type = C_type_raw;
354

355
  using Instruction =
356
      DispatchInstruction<A_type, B_type, C_type, num_warp_m, num_warp_n, N>;
357
358

  using OperandATraits =
359
      OperandTraits<sizeof_bits<A_type>::value, M, K, !trans_A, num_warp_m>;
360
  using OperandBTraits =
361
      OperandTraits<sizeof_bits<B_type>::value, N, K, trans_B, num_warp_n>;
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
  using SmemLayoutA = typename OperandATraits::Layout;
  using SmemLayoutB = typename OperandBTraits::Layout;
  using SmemCopyA = Copy_Atom<typename OperandATraits::Copy, A_type>;
  using SmemCopyB = Copy_Atom<typename OperandBTraits::Copy, B_type>;

  using TileMma = TiledMMA<typename Instruction::MMA,
                           Layout<Shape<Int<num_warp_m>, Int<num_warp_n>, _1>>,
                           typename Instruction::MMA_Group>;

  template <class... Args>
  static CUTE_DEVICE auto remove_swizzle(Layout<Args...> const &layout) {
    return layout;
  }
  // In fp16, when layout is KxN and n_warp is 1 and N % 64 == 0
  // the original layout fail to compile, currently using this as a workaround
  template <class... Args>
  static CUTE_DEVICE auto
  remove_swizzle(ComposedLayout<Args...> const &layout) {
    if constexpr (sizeof(A_type) == 2)
      return layout.layout_b();
    else
      return layout;
  }

  static CUTE_DEVICE void body(A_type_raw *pA, B_type_raw *pB, C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsA = thr_copy_A.partition_S(sA);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);
    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));

    // when layout is KxN and n_warp is 1, there seem to be a bug, use this as a
    // workaround
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
415
    if constexpr (clear_accum) {
416
      clear(acc);
417
    }
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      copy(tiled_copy_A, tCsA(_, _, k), tCrA_copy_view(_, _, k));
      copy(tiled_copy_B, tCsB(_, _, k), tCrB_copy_view(_, _, k));
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_rs(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrA =
        make_tensor(make_rmem_ptr(reinterpret_cast<A_type *>(pA)),
                    partition_shape_A(tiled_mma, Shape<Int<M>, Int<K>>{}));
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
448
    if constexpr (clear_accum) {
449
      clear(acc);
450
    }
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    copy(tiled_copy_B, tCsB(_, _, 0), tCrB_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_B, tCsB(_, _, k + 1), tCrB_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_sr(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCsA = thr_copy_A.partition_S(sA);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrB =
        make_tensor(make_rmem_ptr(reinterpret_cast<B_type *>(pB)),
                    partition_shape_B(tiled_mma, Shape<Int<N>, Int<K>>{}));
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
483
    if constexpr (clear_accum) {
484
      clear(acc);
485
    }
486
487
488
489
490
491
492
493
494
495
496
497
498
    copy(tiled_copy_A, tCsA(_, _, 0), tCrA_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_A, tCsA(_, _, k + 1), tCrA_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB(_, _, k), acc);
    }
  }
};

} // namespace tl_mma

499
} // namespace cute
500
501
502

namespace tl {

503
504
namespace tl_mma {

505
template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
506
507
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
508
509
510
CUTLASS_DEVICE void gemm_ss(A_type *pA, B_type *pB, C_type *accum) {
  using MMA =
      cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
511
                                 trans_B, clear_accum, A_type, B_type, C_type>;
512
  MMA::body(pA, pB, accum);
513
514
}

515
template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
516
517
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
518
519
520
CUTLASS_DEVICE void gemm_rs(A_type *pA, B_type *pB, C_type *accum) {
  using MMA =
      cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
521
                                 trans_B, clear_accum, A_type, B_type, C_type>;
522
523
524
525
  MMA::body_rs(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
526
527
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
528
529
530
CUTLASS_DEVICE void gemm_sr(A_type *pA, B_type *pB, C_type *accum) {
  using MMA =
      cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
531
                                 trans_B, clear_accum, A_type, B_type, C_type>;
532
533
534
535
536
537
  MMA::body_sr(pA, pB, accum);
}

} // namespace tl_mma

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
538
539
          bool trans_B, bool clear_accum = false, bool use_wgmma = true,
          int wg_wait = 0, typename A_type, typename B_type, typename C_type>
540
541
TL_DEVICE void gemm_ss(A_type *pA, B_type *pB, C_type *accum) {
  if constexpr (use_wgmma) {
542
543
544
    using MMA = cute::tl_wgmma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n,
                                             trans_A, trans_B, clear_accum,
                                             A_type, B_type, C_type>;
545
546
    MMA::body<wg_wait>(pA, pB, accum);
  } else {
547
548
549
    using MMA = cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n,
                                           trans_A, trans_B, clear_accum,
                                           A_type, B_type, C_type>;
550
551
552
553
554
    MMA::body(pA, pB, accum);
  }
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
555
556
          bool trans_B, bool clear_accum = false, bool use_wgmma = true,
          int wg_wait = 0, typename A_type, typename B_type, typename C_type>
557
558
TL_DEVICE void gemm_rs(A_type *pA, B_type *pB, C_type *accum) {
  if constexpr (use_wgmma) {
559
560
561
    using MMA = cute::tl_wgmma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n,
                                             trans_A, trans_B, clear_accum,
                                             A_type, B_type, C_type>;
562
563
    MMA::body_rs<wg_wait>(pA, pB, accum);
  } else {
564
565
566
    using MMA = cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n,
                                           trans_A, trans_B, clear_accum,
                                           A_type, B_type, C_type>;
567
568
    MMA::body_rs(pA, pB, accum);
  }
569
570
}

571
template <int num_mma> TL_DEVICE void wait_wgmma() {
572
  cute::warpgroup_wait<num_mma>();
573
574
}

575
576
577
template <int NumMmaThreads> TL_DEVICE void warp_scheduler_barrier_sync() {
  cutlass::arch::NamedBarrier::sync(NumMmaThreads,
                                    cutlass::canonical_warp_group_idx() /*id*/);
578
579
}

580
template <int NumMmaThreads> TL_DEVICE void warp_scheduler_barrier_arrive() {
581
582
  static_assert(NumMmaThreads == 256 || NumMmaThreads == 384);
  if constexpr (NumMmaThreads == 256) {
583
584
    cutlass::arch::NamedBarrier::arrive(
        NumMmaThreads, (1 - cutlass::canonical_warp_group_idx()) /*id*/);
585
  } else {
586
587
588
589
590
591
592
593
594
595
    cutlass::arch::NamedBarrier::arrive(
        NumMmaThreads,
        (cutlass::canonical_warp_group_idx() <= 1
             ? cutlass::canonical_warp_group_idx() + 1
             : cutlass::canonical_warp_group_idx() + 1 - 3) /*id*/);
    cutlass::arch::NamedBarrier::arrive(
        NumMmaThreads,
        (cutlass::canonical_warp_group_idx() <= 0
             ? cutlass::canonical_warp_group_idx() + 2
             : cutlass::canonical_warp_group_idx() + 2 - 3) /*id*/);
596
597
598
  }
}

599
template <int NumMmaThreads> TL_DEVICE void mma_init() {
600
601
602
603
604
605
606
607
608
609
  static_assert(NumMmaThreads == 256 || NumMmaThreads == 384);
  if (cutlass::canonical_warp_group_idx() > 0) {
    cutlass::arch::NamedBarrier::arrive(NumMmaThreads, 0);
  }
  if constexpr (NumMmaThreads == 384) {
    if (cutlass::canonical_warp_group_idx() > 1) {
      cutlass::arch::NamedBarrier::arrive(NumMmaThreads, 1 /*id*/);
    }
  }
}
610
} // namespace tl