gemm_sm90.h 25.2 KB
Newer Older
1
2
3
4
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
#pragma once

5
#include <cute/arch/mma_sm80.hpp>
6
7
#include <cute/arch/mma_sm90.hpp>
#include <cute/atom/mma_atom.hpp>
8
9
#include <cutlass/arch/barrier.h>
#include <cutlass/cutlass.h>
10
11
12
13
14

#include "common.h"

namespace cute {

15
16
using namespace SM90;

17
namespace tl_wgmma {
18
19
20
21
22
23
24
25
26
template <GMMA::Major major, class ElementType, class BLK_MN, class BLK_K>
CUTE_HOST_DEVICE constexpr auto ss_smem_selector() {
  auto BLK_MN0 = size<0>(BLK_MN{});
  auto BLK_K0 = size<0>(BLK_K{});

  static_assert(BLK_MN0 % 8 == 0, "BLK_MN0 must be a multiple of 8.");
  static_assert(BLK_K0 % 8 == 0, "BLK_K0 must be a multiple of 8.");

  if constexpr (major == GMMA::Major::MN) {
27
28
29
    if constexpr (BLK_MN0 %
                      size<0>(GMMA::Layout_MN_SW128_Atom<ElementType>{}) ==
                  0) {
30
      return GMMA::Layout_MN_SW128_Atom<ElementType>{};
31
32
33
34
    } else if constexpr (BLK_MN0 %
                             size<0>(
                                 GMMA::Layout_MN_SW64_Atom<ElementType>{}) ==
                         0) {
35
      return GMMA::Layout_MN_SW64_Atom<ElementType>{};
36
37
38
39
    } else if constexpr (BLK_MN0 %
                             size<0>(
                                 GMMA::Layout_MN_SW32_Atom<ElementType>{}) ==
                         0) {
40
      return GMMA::Layout_MN_SW32_Atom<ElementType>{};
41
42
43
44
    } else if constexpr (BLK_MN0 %
                             size<0>(
                                 GMMA::Layout_MN_INTER_Atom<ElementType>{}) ==
                         0) {
45
46
47
48
      return GMMA::Layout_MN_INTER_Atom<ElementType>{};
    } else {
      static_assert(
          BLK_MN0 % size<0>(GMMA::Layout_MN_INTER_Atom<ElementType>{}) == 0,
49
50
          "BLK_MN0 must be a multiple of "
          "size<0>(GMMA::Layout_MN_INTER_Atom<ElementType>{})");
51
52
    }
  } else if constexpr (major == GMMA::Major::K) {
53
54
    if constexpr (BLK_K0 % size<1>(GMMA::Layout_K_SW128_Atom<ElementType>{}) ==
                  0) {
55
      return GMMA::Layout_K_SW128_Atom<ElementType>{};
56
57
58
    } else if constexpr (BLK_K0 %
                             size<1>(GMMA::Layout_K_SW64_Atom<ElementType>{}) ==
                         0) {
59
      return GMMA::Layout_K_SW64_Atom<ElementType>{};
60
61
62
    } else if constexpr (BLK_K0 %
                             size<1>(GMMA::Layout_K_SW32_Atom<ElementType>{}) ==
                         0) {
63
      return GMMA::Layout_K_SW32_Atom<ElementType>{};
64
65
66
67
    } else if constexpr (BLK_K0 %
                             size<1>(
                                 GMMA::Layout_K_INTER_Atom<ElementType>{}) ==
                         0) {
68
69
70
71
      return GMMA::Layout_K_INTER_Atom<ElementType>{};
    } else {
      static_assert(
          BLK_K0 % size<1>(GMMA::Layout_K_INTER_Atom<ElementType>{}) == 0,
72
73
          "BLK_K0 must be a multiple of "
          "size<1>(GMMA::Layout_K_INTER_Atom<ElementType>{})");
74
75
76
77
    }
  }
}

78
79
80
template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, typename A_type_raw, typename B_type_raw,
          typename C_type_raw>
81
class GemmTensorOp {
82
83
84
85
86
public:
  using A_type = conditional_t<std::is_same<A_type_raw, float>::value,
                               tfloat32_t, A_type_raw>;
  using B_type = conditional_t<std::is_same<B_type_raw, float>::value,
                               tfloat32_t, B_type_raw>;
87
88
  using C_type = C_type_raw;

89
90
91
92
  static constexpr GMMA::Major GmmaMajorA =
      trans_A ? GMMA::Major::MN : GMMA::Major::K;
  static constexpr GMMA::Major GmmaMajorB =
      trans_B ? GMMA::Major::K : GMMA::Major::MN;
93

94
95
96
97
  using SmemLayoutAtomA =
      decltype(ss_smem_selector<GmmaMajorA, A_type, Int<M>, Int<K>>());
  using SmemLayoutAtomB =
      decltype(ss_smem_selector<GmmaMajorB, B_type, Int<N>, Int<K>>());
98

99
100
101
102
103
104
  using SmemLayoutA = decltype(tile_to_shape(
      SmemLayoutAtomA{}, Shape<Int<M>, Int<K>>{},
      conditional_t<trans_A, Step<_2, _1>, Step<_1, _2>>{}));
  using SmemLayoutB = decltype(tile_to_shape(
      SmemLayoutAtomB{}, Shape<Int<N>, Int<K>>{},
      conditional_t<trans_B, Step<_1, _2>, Step<_2, _1>>{}));
105

106
  static_assert(num_warp_m % 4 == 0, "num_warp_m must be a multiple of 4");
107

108
109
  template <int wg_wait = 0>
  static CUTE_DEVICE void body(A_type_raw *pA, B_type_raw *pB, C_type_raw *pC) {
110
    const int tid = threadIdx.x;
111
112
113
114
115
116
117
118
119
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    auto tiled_mma = make_tiled_mma(
        GMMA::ss_op_selector<A_type, B_type, C_type,
                             Shape<Int<M>, Int<N / num_warp_n>, Int<K>>,
                             GmmaMajorA, GmmaMajorB>(),
        Layout<Shape<Int<num_warp_m / 4>, Int<num_warp_n>, _1>>{});
120
121
122
    auto thr_mma = tiled_mma.get_thread_slice(tid);

    // Allocate registers for pipelining
123
124
    Tensor tCsA = thr_mma.partition_A(sA); // (MMA,MMA_M,MMA_K,PIPE)
    Tensor tCsB = thr_mma.partition_B(sB); // (MMA,MMA_N,MMA_K,PIPE)
125

126
127
    Tensor tCrA = thr_mma.make_fragment_A(tCsA); // (MMA,MMA_N,MMA_K,PIPE)
    Tensor tCrB = thr_mma.make_fragment_B(tCsB); // (MMA,MMA_M,MMA_N,PIPE)
128

129
130
131
    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
132
133
134
135
136
137
138
139
140
141
142
143

    warpgroup_fence_operand(acc);
    warpgroup_arrive();
    CUTLASS_PRAGMA_UNROLL
    for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
      // warpgroup_arrive();
      // (V,M) x (V,N) => (V,M,N)
      gemm(tiled_mma, tCrA(_, _, k_block), tCrB(_, _, k_block), acc);
      tiled_mma.accumulate_ = GMMA::ScaleOut::One;
    }

    warpgroup_commit_batch();
144
145
146
    if constexpr (wg_wait >= 0) {
      warpgroup_wait<wg_wait>();
    }
147
148
149
150
151
152
153
154
155
156
157
    warpgroup_fence_operand(acc);
    // warpgroup_fence_operand(acc);
    // warpgroup_arrive();

    // gemm(tiled_mma, tCrA(_, _, _), tCrB(_, _, _), acc);

    // warpgroup_commit_batch();
    // if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
    // warpgroup_fence_operand(acc);
  }

158
159
160
  template <int wg_wait = 0>
  static CUTE_DEVICE void body_rs(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
161
    // TODO: Move bar.sync out of body_rs
162
163
    // asm volatile("bar.sync %0, %1;" : : "r"(1), "r"(num_warp_m * num_warp_n *
    // 32));
164
    const int tid = threadIdx.x;
165
166
167
168
169
170
171
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    auto tiled_mma = make_tiled_mma(
        GMMA::rs_op_selector<A_type, B_type, C_type,
                             Shape<Int<M>, Int<N / num_warp_n>, Int<K>>,
                             GmmaMajorA, GmmaMajorB>(),
        Layout<Shape<Int<num_warp_m / 4>, Int<num_warp_n>, _1>>{});
172
173
174
    auto thr_mma = tiled_mma.get_thread_slice(tid);

    // Allocate registers for pipelining
175
176
177
178
179
180
181
182
    Tensor tCsB = thr_mma.partition_B(sB);       // (MMA,MMA_N,MMA_K,PIPE)
    Tensor tCrB = thr_mma.make_fragment_B(tCsB); // (MMA,MMA_M,MMA_N,PIPE)
    Tensor tCrA =
        make_tensor(make_rmem_ptr(reinterpret_cast<A_type *>(pA)),
                    partition_shape_A(tiled_mma, Shape<Int<M>, Int<K>>{}));
    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
183
184
185
186
187
188
189
190
191
192
193
194

    warpgroup_fence_operand(tCrA);
    warpgroup_fence_operand(acc);
    warpgroup_arrive();
    CUTLASS_PRAGMA_UNROLL
    for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
      // warpgroup_arrive();
      // (V,M) x (V,N) => (V,M,N)
      gemm(tiled_mma, tCrA(_, _, k_block), tCrB(_, _, k_block), acc);
      tiled_mma.accumulate_ = GMMA::ScaleOut::One;
    }
    warpgroup_commit_batch();
195
196
197
    if constexpr (wg_wait >= 0) {
      warpgroup_wait<wg_wait>();
    }
198
199
200
201
202
203
204
205
206
    warpgroup_fence_operand(acc);
    warpgroup_fence_operand(tCrA);

    // warpgroup_fence_operand(acc);
    // warpgroup_arrive();

    // gemm(tiled_mma, tCrA(_, _, _), tCrB(_, _, _), acc);

    // warpgroup_commit_batch();
207

208
209
210
211
212
    // if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
    // warpgroup_fence_operand(acc);
  }
};

213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
} // namespace tl_wgmma

namespace tl_mma {

template <typename A_type, typename B_type, typename C_type, int num_warp_m,
          int num_warp_n>
struct DispatchInstruction;

using _X = Underscore;

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 800))
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<half_t, half_t, half_t, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x16_F16F16F16F16_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<bfloat16_t, bfloat16_t, float, num_warp_m,
                           num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<tfloat32_t, tfloat32_t, float, num_warp_m,
                           num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x8_F32TF32TF32F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<int8_t, int8_t, int, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x32_S32S8S8S32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<double, double, double, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_8x8x4_F64F64F64F64_TN>;
  using MMA_Group = Tile<Int<num_warp_m * 16>, Int<num_warp_n * 16>, _X>;
};
#elif (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 750))
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _16>;
};
#endif

template <int Bits, int N, int K, bool K_inner, typename Enable = void>
struct OperandTraits {
  // Primary template, use padded layout and default copy
  static constexpr int stride = K_inner ? K : N;
  static constexpr int padded =
      stride % (256 / Bits) == 0 ? stride + 128 / Bits : stride;
  using Layout = typename std::conditional<
      K_inner, Layout<Shape<Int<N>, Int<K>>, Shape<Int<padded>, _1>>,
      Layout<Shape<Int<N>, Int<K>>, Shape<_1, Int<padded>>>>::type;
  using Copy = DefaultCopy;
};

template <int N, int K>
struct OperandTraits<16, N, K, true,
                     typename std::enable_if<K % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<16, N, K, true,
                     typename std::enable_if<K % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<16, N, K, false,
                     typename std::enable_if<N % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = SM75_U16x8_LDSM_T;
};

template <int N, int K>
struct OperandTraits<16, N, K, false,
                     typename std::enable_if<N % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_64, _8>, Stride<_1, _64>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = SM75_U16x8_LDSM_T;
};

template <int N, int K>
struct OperandTraits<32, N, K, true,
                     typename std::enable_if<K % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<32, N, K, true,
                     typename std::enable_if<K % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_8, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<32, N, K, false,
                     typename std::enable_if<N % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

template <int N, int K>
struct OperandTraits<32, N, K, false,
                     typename std::enable_if<N % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_16, _8>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

template <int N, int K>
struct OperandTraits<8, N, K, true,
                     typename std::enable_if<K % 128 == 64>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 4, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<8, N, K, true,
                     typename std::enable_if<K % 128 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 4, 3>{}, Layout<Shape<_8, _128>, Stride<_128, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<64, N, K, true,
                     typename std::enable_if<K % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 0, 4>{}, Layout<Shape<_4, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = DefaultCopy;
};

template <int N, int K>
struct OperandTraits<64, N, K, false,
                     typename std::enable_if<N % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 2>{}, Layout<Shape<_16, _4>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = DefaultCopy;
};

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, typename A_type_raw, typename B_type_raw,
          typename C_type_raw>
class GemmTensorOp {
public:
  using A_type =
      typename std::conditional<std::is_same<A_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using B_type =
      typename std::conditional<std::is_same<B_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using C_type = C_type_raw;
  using Instruction =
      DispatchInstruction<A_type, B_type, C_type, num_warp_m, num_warp_n>;

  using OperandATraits =
      OperandTraits<sizeof_bits<A_type>::value, M, K, !trans_A>;
  using OperandBTraits =
      OperandTraits<sizeof_bits<B_type>::value, N, K, trans_B>;
  using SmemLayoutA = typename OperandATraits::Layout;
  using SmemLayoutB = typename OperandBTraits::Layout;
  using SmemCopyA = Copy_Atom<typename OperandATraits::Copy, A_type>;
  using SmemCopyB = Copy_Atom<typename OperandBTraits::Copy, B_type>;

  using TileMma = TiledMMA<typename Instruction::MMA,
                           Layout<Shape<Int<num_warp_m>, Int<num_warp_n>, _1>>,
                           typename Instruction::MMA_Group>;

  template <class... Args>
  static CUTE_DEVICE auto remove_swizzle(Layout<Args...> const &layout) {
    return layout;
  }
  // In fp16, when layout is KxN and n_warp is 1 and N % 64 == 0
  // the original layout fail to compile, currently using this as a workaround
  template <class... Args>
  static CUTE_DEVICE auto
  remove_swizzle(ComposedLayout<Args...> const &layout) {
    if constexpr (sizeof(A_type) == 2)
      return layout.layout_b();
    else
      return layout;
  }

  static CUTE_DEVICE void body(A_type_raw *pA, B_type_raw *pB, C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsA = thr_copy_A.partition_S(sA);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);
    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));

    // when layout is KxN and n_warp is 1, there seem to be a bug, use this as a
    // workaround
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      copy(tiled_copy_A, tCsA(_, _, k), tCrA_copy_view(_, _, k));
      copy(tiled_copy_B, tCsB(_, _, k), tCrB_copy_view(_, _, k));
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_rs(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrA =
        make_tensor(make_rmem_ptr(reinterpret_cast<A_type *>(pA)),
                    partition_shape_A(tiled_mma, Shape<Int<M>, Int<K>>{}));

    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
    copy(tiled_copy_B, tCsB(_, _, 0), tCrB_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_B, tCsB(_, _, k + 1), tCrB_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_sr(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCsA = thr_copy_A.partition_S(sA);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrB =
        make_tensor(make_rmem_ptr(reinterpret_cast<B_type *>(pB)),
                    partition_shape_B(tiled_mma, Shape<Int<N>, Int<K>>{}));

    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    copy(tiled_copy_A, tCsA(_, _, 0), tCrA_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_A, tCsA(_, _, k + 1), tCrA_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB(_, _, k), acc);
    }
  }
};

} // namespace tl_mma

538
} // namespace cute
539
540
541

namespace tl {

542
543
namespace tl_mma {

544
template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
545
546
547
548
          bool trans_B, typename A_type, typename B_type, typename C_type>
CUTLASS_DEVICE void gemm_ss(A_type *pA, B_type *pB, C_type *accum) {
  using MMA =
      cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
549
                                 trans_B, A_type, B_type, C_type>;
550
  MMA::body(pA, pB, accum);
551
552
}

553
template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
554
555
556
557
          bool trans_B, typename A_type, typename B_type, typename C_type>
CUTLASS_DEVICE void gemm_rs(A_type *pA, B_type *pB, C_type *accum) {
  using MMA =
      cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
558
                                 trans_B, A_type, B_type, C_type>;
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
  MMA::body_rs(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, typename A_type, typename B_type, typename C_type>
CUTLASS_DEVICE void gemm_sr(A_type *pA, B_type *pB, C_type *accum) {
  using MMA =
      cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                 trans_B, A_type, B_type, C_type>;
  MMA::body_sr(pA, pB, accum);
}

} // namespace tl_mma

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool use_wgmma = true, int wg_wait = 0, typename A_type,
          typename B_type, typename C_type>
TL_DEVICE void gemm_ss(A_type *pA, B_type *pB, C_type *accum) {
  if constexpr (use_wgmma) {
    using MMA =
        cute::tl_wgmma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                     trans_B, A_type, B_type, C_type>;
    MMA::body<wg_wait>(pA, pB, accum);
  } else {
    using MMA =
        cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                   trans_B, A_type, B_type, C_type>;
    MMA::body(pA, pB, accum);
  }
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
          bool trans_B, bool use_wgmma = true, int wg_wait = 0, typename A_type,
          typename B_type, typename C_type>
TL_DEVICE void gemm_rs(A_type *pA, B_type *pB, C_type *accum) {
  if constexpr (use_wgmma) {
    using MMA =
        cute::tl_wgmma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                     trans_B, A_type, B_type, C_type>;
    MMA::body_rs<wg_wait>(pA, pB, accum);
  } else {
    using MMA =
        cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
                                   trans_B, A_type, B_type, C_type>;
    MMA::body_rs(pA, pB, accum);
  }
605
606
}

607
template <int num_mma> TL_DEVICE void wait_wgmma() {
608
  cute::warpgroup_wait<num_mma>();
609
610
}

611
612
613
template <int NumMmaThreads> TL_DEVICE void warp_scheduler_barrier_sync() {
  cutlass::arch::NamedBarrier::sync(NumMmaThreads,
                                    cutlass::canonical_warp_group_idx() /*id*/);
614
615
}

616
template <int NumMmaThreads> TL_DEVICE void warp_scheduler_barrier_arrive() {
617
618
  static_assert(NumMmaThreads == 256 || NumMmaThreads == 384);
  if constexpr (NumMmaThreads == 256) {
619
620
    cutlass::arch::NamedBarrier::arrive(
        NumMmaThreads, (1 - cutlass::canonical_warp_group_idx()) /*id*/);
621
  } else {
622
623
624
625
626
627
628
629
630
631
    cutlass::arch::NamedBarrier::arrive(
        NumMmaThreads,
        (cutlass::canonical_warp_group_idx() <= 1
             ? cutlass::canonical_warp_group_idx() + 1
             : cutlass::canonical_warp_group_idx() + 1 - 3) /*id*/);
    cutlass::arch::NamedBarrier::arrive(
        NumMmaThreads,
        (cutlass::canonical_warp_group_idx() <= 0
             ? cutlass::canonical_warp_group_idx() + 2
             : cutlass::canonical_warp_group_idx() + 2 - 3) /*id*/);
632
633
634
  }
}

635
template <int NumMmaThreads> TL_DEVICE void mma_init() {
636
637
638
639
640
641
642
643
644
645
  static_assert(NumMmaThreads == 256 || NumMmaThreads == 384);
  if (cutlass::canonical_warp_group_idx() > 0) {
    cutlass::arch::NamedBarrier::arrive(NumMmaThreads, 0);
  }
  if constexpr (NumMmaThreads == 384) {
    if (cutlass::canonical_warp_group_idx() > 1) {
      cutlass::arch::NamedBarrier::arrive(NumMmaThreads, 1 /*id*/);
    }
  }
}
646
} // namespace tl