gemm.cc 17.9 KB
Newer Older
1
2
3
4
5
6
7
8
/*!
 * \file tl/op/gemm.cc
 *
 * Define gemm operator.
 */

#include "gemm.h"

9
#include "builtin.h"
10
11
12
#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>
13
#include <tvm/tir/transform.h>
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include "../target/utils.h"

namespace tvm {
namespace tl {

using namespace tir;

static std::vector<int> toPrimeFactors(int x) {
  int i = 2;
  std::vector<int> result;
  while (x > 1) {
    if (x % i == 0) {
      x /= i;
      result.push_back(i);
    } else {
      i++;
    }
  }
  return result;
}

Gemm::Gemm(Array<PrimExpr> args, BufferMap vmap) {
37
38
39
40
41
42
  Aptr = args[0];
  Bptr = args[1];
  Cptr = args[2];
  A = vmap[GetVarFromAccessPtr(Aptr)];
  B = vmap[GetVarFromAccessPtr(Bptr)];
  C = vmap[GetVarFromAccessPtr(Cptr)];
43
44
45
46
  trans_A = args[3].as<Bool>().value();
  trans_B = args[4].as<Bool>().value();
  M = args[5].as<IntImm>().value()->value;
  N = args[6].as<IntImm>().value()->value;
47
  K = args[7].as<IntImm>().value()->value;
48
  policy = static_cast<GemmWarpPolicy>(args[8].as<IntImm>().value()->value);
49
50
51
  clear_accum = args[9].as<Bool>().value();
  if (args.size() > 10) {
    kPack = args[10].as<IntImm>().value()->value;
52
53
54
55
    if (kPack != 1 && kPack != 2) {
      ICHECK(false) << "kPack must be 1 or 2";
    }
  }
56
57
  if (args.size() > 11) {
    wg_wait = args[11].as<IntImm>().value()->value;
58
  }
59
60
}

61
62
std::pair<int, int> Gemm::ComputeWarpPartition(int num_warps, Target target,
                                               bool maybe_hopper_wgmma) const {
63
  int m_warp = 1, n_warp = 1;
64
65
  constexpr int kMPerWarp = 16; // Rows processed by a single warp
  constexpr int kNPerWarp = 8;  // Columns processed by a single warp
66
67
  bool allow_wgmma = TargetIsHopper(target) && maybe_hopper_wgmma &&
                     (this->M >= 64) && (num_warps % 4 == 0);
68
69
70
71
  ICHECK(this->M % kMPerWarp == 0)
      << "M must be divisible by " << kMPerWarp << ", but got " << this->M;
  ICHECK(this->N % kNPerWarp == 0)
      << "N must be divisible by " << kNPerWarp << ", but got " << this->N;
72
  if (allow_wgmma) {
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
    ICHECK(num_warps % 4 == 0) << "Warp-Group MMA requires 128×k threads.";

    constexpr int kGroup = 4; // Number of warps in a warp-group

    m_warp = kGroup; // Initially, only one warp-group on M dimension
    n_warp = num_warps / m_warp; // Rest all on N dimension

    if (this->policy == GemmWarpPolicy::kFullRow) {
      // Try to put as many warp-groups as possible on M dimension
      // (decreasing multiples of 4, ensuring divisibility by M)
      for (int cand = num_warps; cand >= kGroup; cand -= kGroup) {
        if (this->M % (cand * kMPerWarp) == 0) {
          m_warp = cand;
          n_warp = num_warps / m_warp;
          break;
        }
      }
90
    } else if (this->policy == GemmWarpPolicy::kFullCol) {
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
      // Try to use warps on N dimension; if N is not divisible, split excess
      // groups to M
      int cand_n = n_warp;                       // Initially assume all on N
      if (this->N % (cand_n * kNPerWarp) != 0) { // N direction division fails
        int max_n = this->N / kNPerWarp;
        // Find a feasible n_warp from max possible downwards, ensuring
        // num_warps/n_warp is multiple of 4
        for (int n = std::min(cand_n, max_n); n >= 1; --n) {
          if (num_warps % n == 0 && (num_warps / n) % kGroup == 0) {
            n_warp = n;
            m_warp = num_warps / n_warp;
            break;
          }
        }
      }
    } else if (this->policy == GemmWarpPolicy::kSquare) {
      // Exhaustive search, but m must be multiple of 4
      int max_m = this->M / kMPerWarp;
      int max_n = this->N / kNPerWarp;

      float ideal = this->N > 0 ? static_cast<float>(this->M) / this->N : 1.f;

      float best_score = std::numeric_limits<float>::max();
      int best_m = kGroup, best_n = n_warp;

      for (int m = kGroup; m <= num_warps && m <= max_m; m += kGroup) {
        if (num_warps % m)
          continue;
        int n = num_warps / m;
        if (n > max_n)
          continue;

        float m_per_warp = static_cast<float>(this->M) / (m * kMPerWarp);
        float n_per_warp = static_cast<float>(this->N) / (n * kNPerWarp);
        float score = std::abs(m_per_warp / n_per_warp - ideal);

        if (score < best_score) {
          best_score = score;
          best_m = m;
          best_n = n;
        }
      }
      m_warp = best_m;
      n_warp = best_n;
135
136
137
    } else {
      ICHECK(0) << "Unknown GemmWarpPolicy";
    }
138
139
140

    ICHECK(m_warp * n_warp == num_warps)
        << "m_warp * n_warp must equal num_warps";
141
142
    return {m_warp, n_warp};
  }
143

144
  if (this->policy == GemmWarpPolicy::kFullRow) {
145
    // Try to partition M first
146
    m_warp = num_warps;
147
148
149
150
    n_warp = 1;

    // If M cannot be evenly divided by m_warp*16, try to split remaining warps
    // to N
151
    if (this->M % (m_warp * kMPerWarp) != 0) {
152
      // Calculate how many warps we can use for M
153
      int max_m_warps = this->M / kMPerWarp;
154
155
156
157
158
159
      m_warp = max_m_warps;
      // Use remaining warps for N
      n_warp = num_warps / m_warp;
      if (n_warp == 0)
        n_warp = 1;
    }
160
  } else if (this->policy == GemmWarpPolicy::kFullCol) {
161
162
    // Try to partition N first
    m_warp = 1;
163
    n_warp = num_warps;
164
165
166

    // If N cannot be evenly divided by n_warp*8, try to split remaining warps
    // to M
167
    if (this->N % (n_warp * kNPerWarp) != 0) {
168
      // Calculate how many warps we can use for N
169
      int max_n_warps = this->N / kNPerWarp;
170
171
172
173
174
175
      n_warp = max_n_warps;
      // Use remaining warps for M
      m_warp = num_warps / n_warp;
      if (m_warp == 0)
        m_warp = 1;
    }
176
  } else if (this->policy == GemmWarpPolicy::kSquare) {
177
    // First calculate the maximum possible warps for each dimension
178
179
180
181
    int max_m_warps =
        this->M / kMPerWarp; // Each warp needs at least 16 elements in M
    int max_n_warps =
        this->N / kNPerWarp; // Each warp needs at least 8 elements in N
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202

    // Calculate the ideal ratio of M/N warps based on the matrix dimensions
    float ideal_ratio = 1.0f;
    if (this->N > 0) {
      ideal_ratio = static_cast<float>(this->M) / this->N;
    }

    // Start with a balanced initial guess
    m_warp = 1;
    n_warp = 1;

    // Try to find the best balanced partition
    int best_m = 1;
    int best_n = 1;
    float best_balance = std::numeric_limits<float>::max();

    // Try all possible combinations that satisfy the constraints
    for (int m = 1; m <= max_m_warps && m <= num_warps; m++) {
      int n = num_warps / m;

      // Calculate how balanced this partition is
203
204
      float m_per_warp = static_cast<float>(this->M) / (m * kMPerWarp);
      float n_per_warp = static_cast<float>(this->N) / (n * kNPerWarp);
205
206
207
208
209
210
      float balance = std::abs(m_per_warp / n_per_warp - ideal_ratio);

      if (balance < best_balance) {
        best_balance = balance;
        best_m = m;
        best_n = n;
211
212
      }
    }
213
214
215

    m_warp = best_m;
    n_warp = best_n;
216
217
218
219
220
221
  } else {
    ICHECK(0) << "Unknown GemmWarpPolicy";
  }
  return {m_warp, n_warp};
}

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
bool Gemm::CheckWGMMA() const {
  if (C->dtype == DataType::Float(16)) {
    if (A->dtype == DataType::Float(16) && B->dtype == DataType::Float(16))
      return K % 16 == 0;
    else if (A->dtype == DataType::NVFloat8E4M3() &&
             B->dtype == DataType::NVFloat8E4M3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::NVFloat8E4M3() &&
             B->dtype == DataType::NVFloat8E5M2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::NVFloat8E5M2() &&
             B->dtype == DataType::NVFloat8E4M3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::NVFloat8E5M2() &&
             B->dtype == DataType::NVFloat8E5M2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else
      return false;
  } else if (C->dtype == DataType::Float(32)) {
    if (A->dtype == DataType::Float(16) && B->dtype == DataType::Float(16))
      return K % 16 == 0;
    else if (A->dtype == DataType::BFloat(16) &&
             B->dtype == DataType::BFloat(16))
      return K % 16 == 0;
    else if (A->dtype == DataType::Float(32) && B->dtype == DataType::Float(32))
      return (!trans_A) && trans_B && K % 8 == 0;
    else if (A->dtype == DataType::NVFloat8E4M3() &&
             B->dtype == DataType::NVFloat8E4M3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::NVFloat8E4M3() &&
             B->dtype == DataType::NVFloat8E5M2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::NVFloat8E5M2() &&
             B->dtype == DataType::NVFloat8E4M3())
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::NVFloat8E5M2() &&
             B->dtype == DataType::NVFloat8E5M2())
      return (!trans_A) && trans_B && K % 32 == 0;
    else
      return false;
  } else if (C->dtype == DataType::Int(32)) {
    if (A->dtype == DataType::Int(8) && B->dtype == DataType::Int(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::Int(8) && B->dtype == DataType::UInt(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::UInt(8) && B->dtype == DataType::Int(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else if (A->dtype == DataType::UInt(8) && B->dtype == DataType::UInt(8))
      return (!trans_A) && trans_B && K % 32 == 0;
    else
      return false;
  } else {
    return false;
  }
}

278
Stmt Gemm::Lower(const LowerArgs &T, arith::Analyzer *analyzer) const {
279
280
281
282
  int warp_size = 32;
  if (TargetIsCDNA(T.target)) {
    warp_size = 64;
  }
283
  auto block_size = *as_const_int(T.thread_bounds->extent);
284
  bool maybe_wgmma = TargetIsHopper(T.target) && (this->M >= 64) &&
285
                     (block_size / warp_size % 4 == 0) && CheckWGMMA();
286

287
  auto [warp_m, warp_n] =
288
      ComputeWarpPartition(block_size / warp_size, T.target, maybe_wgmma);
289

290
291
292
293
294
295
296
297
298
299
300
  std::stringstream ss;
  std::string op_name = "tl::gemm_ss";
  if (A.scope() == "local.fragment") {
    ICHECK(B.scope() != "local.fragment");
    op_name = "tl::gemm_rs";
  } else if (B.scope() == "local.fragment") {
    op_name = "tl::gemm_sr";
  }
  ss << op_name << "<" << M << ", " << N << ", " << K << ", ";
  ss << warp_m << ", " << warp_n << ", ";
  ss << trans_A << ", " << trans_B;
301
  ss << ", " << clear_accum;
302
303
304
  if (TargetIsCDNA(T.target)) {
    // for cdna gemm, we need to specify kPack
    ss << ", " << kPack;
305
306
  } else if (TargetIsHopper(T.target)) {
    ss << ", " << (maybe_wgmma ? "true" : "false");
307
  }
308
309
310
  if (wg_wait != 0) {
    ss << ", " << wg_wait;
  }
311
312
313
314
315
316
317
  ss << ">";
  auto A_buffer = T.buffer_remap.count(A) ? T.buffer_remap[A] : A;
  auto B_buffer = T.buffer_remap.count(B) ? T.buffer_remap[B] : B;
  auto C_buffer = T.buffer_remap[C];

  Array<PrimExpr> new_args;
  new_args.push_back(StringImm(ss.str()));
318
319
320
  new_args.push_back(Aptr);
  new_args.push_back(Bptr);
  new_args.push_back(Cptr);
321
322
323
324
  auto new_call = Call(DataType::Handle(), builtin::call_extern(), new_args);
  return Evaluate(new_call);
}

325
326
327
LayoutMap Gemm::InferLayout(const LayoutInferArgs &T, InferLevel level) {
  if (completed_)
    return {};
328
329
  LayoutMap results;
  ICHECK(C.scope() == "local.fragment");
330
331
  auto thread_range = T.thread_bounds;
  auto block_size = *as_const_int(thread_range->extent);
332
333
  if (TargetIsVolta(T.target)) {
    const int warp_size = 32;
334
    auto [warp_m, warp_n] =
335
        ComputeWarpPartition(block_size / warp_size, T.target);
336
337
    auto fragment =
        makeGemmVoltaFragmentC(M, N, M / warp_m, N / warp_n, C->dtype.bits());
338
    results.Set(C, fragment->BindThreadRange(thread_range));
339
    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
340
341
342
343
      int dim_A = A->shape.size();
      results.Set(A, makeGemmVoltaABLayout(*as_const_int(A->shape[dim_A - 2]),
                                           *as_const_int(A->shape[dim_A - 1]),
                                           true, trans_A ? 1 : 2));
344
345
    } else if (A.scope() == "local.fragment") {
      ICHECK(trans_A == false);
346
      auto fragment = makeGemmVoltaFragmentA(M, N, K, M / warp_m, N / warp_n);
347
      results.Set(A, fragment->BindThreadRange(thread_range));
348
349
350
351
352
    } else {
      ICHECK(0);
    }

    ICHECK(B.scope() == "shared" || B.scope() == "shared.dyn");
353
354
355
356
    int dim_B = B->shape.size();
    results.Set(B, makeGemmVoltaABLayout(*as_const_int(B->shape[dim_B - 2]),
                                         *as_const_int(B->shape[dim_B - 1]),
                                         false, trans_B ? 2 : 1));
357
358
  } else if (TargetIsAmpere(T.target) || TargetIsTuring(T.target)) {
    const int warp_size = 32;
359
    auto [warp_m, warp_n] =
360
        ComputeWarpPartition(block_size / warp_size, T.target);
361
362
    auto fragment =
        makeGemmFragmentC(M, N, M / warp_m, N / warp_n, C->dtype.bits());
363
    results.Set(C, fragment->BindThreadRange(thread_range));
364
365

    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
366
367
368
      int dim_A = A->shape.size();
      const int64_t mat_stride = *as_const_int(A->shape[dim_A - 2]);
      const int64_t mat_continuous = *as_const_int(A->shape[dim_A - 1]);
369
370
371
      results.Set(A,
                  makeGemmABLayout(mat_stride, mat_continuous, mat_continuous,
                                   A->dtype.bits(), trans_A ? 1 : 2));
372
    } else if (A.scope() == "local.fragment") {
373
374
      auto fragment = makeGemmFragmentA(M, N, K, M / warp_m, N / warp_n,
                                        A->dtype.bits(), trans_A);
375
      results.Set(A, fragment->BindThreadRange(thread_range));
376
377
378
379
    } else {
      ICHECK(0);
    }
    if (B.scope() == "shared" || B.scope() == "shared.dyn") {
380
381
382
      int dim_B = B->shape.size();
      const int64_t mat_stride = *as_const_int(B->shape[dim_B - 2]);
      const int64_t mat_continuous = *as_const_int(B->shape[dim_B - 1]);
383
384
385
      results.Set(B,
                  makeGemmABLayout(mat_stride, mat_continuous, mat_continuous,
                                   B->dtype.bits(), trans_B ? 2 : 1));
386
    } else if (B.scope() == "local.fragment") {
387
388
      auto fragment =
          makeGemmFragmentB(M, N, K, M / warp_m, N / warp_n, trans_B);
389
      results.Set(B, fragment->BindThreadRange(thread_range));
390
391
392
393
394
    } else {
      ICHECK(0);
    }
  } else if (TargetIsHopper(T.target)) {
    const int warp_size = 32;
395
396
    bool maybe_wgmma =
        (this->M >= 64) && (block_size / warp_size % 4 == 0) && CheckWGMMA();
397
    auto [warp_m, warp_n] =
398
        ComputeWarpPartition(block_size / warp_size, T.target, maybe_wgmma);
399
    auto fragment =
400
401
402
403
        maybe_wgmma
            ? makeGemmFragmentCHopper(M, N, M / warp_m, N / warp_n,
                                      C->dtype.bits())
            : makeGemmFragmentC(M, N, M / warp_m, N / warp_n, C->dtype.bits());
404
    results.Set(C, fragment->BindThreadRange(thread_range));
405
    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
406
407
408
      int dim_A = A->shape.size();
      const int64_t mat_stride = *as_const_int(A->shape[dim_A - 2]);
      const int64_t mat_continuous = *as_const_int(A->shape[dim_A - 1]);
409
      const int64_t continuity =
410
          trans_A ? 4 * mat_continuous / warp_m : mat_continuous;
411
412
413
414
415
416
417
      auto ABLayout =
          maybe_wgmma
              ? makeGemmABLayoutHopper(mat_stride, mat_continuous, continuity,
                                       A->dtype.bits(), trans_A ? 1 : 2)
              : makeGemmABLayout(mat_stride, mat_continuous, mat_continuous,
                                 A->dtype.bits(), trans_A ? 1 : 2);
      results.Set(A, ABLayout);
418
    } else {
419
420
      auto fragment = makeGemmFragmentA(M, N, K, M / warp_m, N / warp_n,
                                        A->dtype.bits(), trans_A);
421
      results.Set(A, fragment->BindThreadRange(thread_range));
422
423
    }
    if (B.scope() == "shared" || B.scope() == "shared.dyn") {
424
425
426
      int dim_B = B->shape.size();
      const int64_t mat_stride = *as_const_int(B->shape[dim_B - 2]);
      const int64_t mat_continuous = *as_const_int(B->shape[dim_B - 1]);
427
428
      const int64_t continuity =
          trans_B ? mat_continuous : mat_continuous / warp_n;
429
430
431
432
433
434
435
      auto ABLayout =
          maybe_wgmma
              ? makeGemmABLayoutHopper(mat_stride, mat_continuous, continuity,
                                       B->dtype.bits(), trans_B ? 2 : 1)
              : makeGemmABLayout(mat_stride, mat_continuous, mat_continuous,
                                 B->dtype.bits(), trans_B ? 2 : 1);
      results.Set(B, ABLayout);
436
437
438
439
440
    } else {
      ICHECK(0) << "WGMMA only support B in shared.";
    }
  } else if (TargetIsCDNA(T.target)) {
    const int warp_size = 64;
441
    auto [warp_m, warp_n] =
442
        ComputeWarpPartition(block_size / warp_size, T.target);
443

444
445
    auto fragment =
        makeGemmFragmentCCDNA(M, N, M / warp_m, N / warp_n, C->dtype.bits());
446
    results.Set(C, fragment->BindThreadRange(thread_range));
447
448

    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
449
450
451
452
      int dim_A = A->shape.size();
      auto shared_layout = makeGemmABLayoutCDNA(
          *as_const_int(A->shape[dim_A - 2]),
          *as_const_int(A->shape[dim_A - 1]), A->dtype.bits(), kPack);
453
454
      results.Set(A, shared_layout);
    } else if (A.scope() == "local.fragment") {
455
456
      auto fragment = makeGemmFragmentACDNA(M, N, K, M / warp_m, N / warp_n,
                                            A->dtype.bits(), trans_A);
457
      results.Set(A, fragment->BindThreadRange(thread_range));
458
459
460
461
    } else {
      ICHECK(0);
    }
    if (B.scope() == "shared" || B.scope() == "shared.dyn") {
462
463
464
465
      int dim_B = B->shape.size();
      auto shared_layout = makeGemmABLayoutCDNA(
          *as_const_int(B->shape[dim_B - 2]),
          *as_const_int(B->shape[dim_B - 1]), B->dtype.bits(), kPack);
466
467
468

      results.Set(B, shared_layout);
    } else if (B.scope() == "local.fragment") {
469
470
      auto fragment =
          makeGemmFragmentB(M, N, K, M / warp_m, N / warp_n, trans_B);
471
      results.Set(B, fragment->BindThreadRange(thread_range));
472
473
474
475
476
477
478
479
480
481
482
483
    } else {
      ICHECK(0);
    }
  } else {
    ICHECK(0) << "Not supported " << T.target->str();
  }
  completed_ = true;
  return results;
}

TIR_REGISTER_TL_OP(Gemm, gemm)
    .set_num_inputs(5)
484
485
    .set_attr<TCallEffectKind>("TCallEffectKind",
                               Integer(CallEffectKind::kOpaque));
486

487
488
} // namespace tl
} // namespace tvm