gemm.cc 9.05 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.

/*!
 * \file tl/op/gemm.cc
 *
 * Define gemm operator.
 */

#include "gemm.h"

#include <tvm/tir/builtin.h>
#include <tvm/tir/op.h>
#include <tvm/tir/op_attr_types.h>

#include "../target/utils.h"

namespace tvm {
namespace tl {

using namespace tir;

static std::vector<int> toPrimeFactors(int x) {
  int i = 2;
  std::vector<int> result;
  while (x > 1) {
    if (x % i == 0) {
      x /= i;
      result.push_back(i);
    } else {
      i++;
    }
  }
  return result;
}

Gemm::Gemm(Array<PrimExpr> args, BufferMap vmap) {
  A = vmap[GetVarFromAccessPtr(args[0])];
  B = vmap[GetVarFromAccessPtr(args[1])];
  C = vmap[GetVarFromAccessPtr(args[2])];
  trans_A = args[3].as<Bool>().value();
  trans_B = args[4].as<Bool>().value();
  M = args[5].as<IntImm>().value()->value;
  N = args[6].as<IntImm>().value()->value;
  K = args[7].as<IntImm>().value()->value;  
  policy = static_cast<GemmWarpPolicy>(args[8].as<IntImm>().value()->value);
  if (args.size() > 9) {
    kPack = args[9].as<IntImm>().value()->value;
    if (kPack != 1 && kPack != 2) {
      ICHECK(false) << "kPack must be 1 or 2";
    }
  }
}

std::pair<int, int> Gemm::ComputeWarpPartition(int num_warps, Target target) const {
  int m_warp = 1, n_warp = 1;
  if (TargetIsHopper(target)) {
    ICHECK(num_warps % 4 == 0) << "Use Warp Group MMA requires 128*N threads.";
    if (this->policy == GemmWarpPolicy::kFullRow || this->policy == GemmWarpPolicy::kSquare) {
      m_warp = num_warps;
      ICHECK(this->M % num_warps == 0);
    } else if (this->policy == GemmWarpPolicy::kFullCol) {
      m_warp = 4;
      n_warp = num_warps / 4;
      ICHECK(this->N % n_warp == 0);
    } else {
      ICHECK(0) << "Unknown GemmWarpPolicy";
    }
    return {m_warp, n_warp};
  }
  if (this->policy == GemmWarpPolicy::kFullRow) {
    m_warp = num_warps;
    ICHECK(this->M % num_warps == 0);
  } else if (this->policy == GemmWarpPolicy::kFullCol) {
    n_warp = num_warps;
    ICHECK(this->N % num_warps == 0);
  } else if (this->policy == GemmWarpPolicy::kSquare) {
    auto factors = toPrimeFactors(num_warps);
    for (int factor : factors) {
      bool M_divisible = (this->M % (factor * m_warp)) == 0;
      bool N_divisible = (this->N % (factor * n_warp)) == 0;
      if (M_divisible && N_divisible) {
        if (this->M / m_warp >= this->N / n_warp)
          m_warp *= factor;
        else
          n_warp *= factor;
      } else if (M_divisible) {
        m_warp *= factor;
      } else if (N_divisible) {
        n_warp *= factor;
      } else {
        ICHECK(0) << "Cannot compute warp partition for shape" << M << " " << N
                  << " with num_warps " << num_warps;
      }
    }
  } else {
    ICHECK(0) << "Unknown GemmWarpPolicy";
  }
  // TODO: perform more checks here
  return {m_warp, n_warp};
}

Stmt Gemm::Lower(const LowerArgs& T, arith::Analyzer* analyzer) const {
  int warp_size = 32;
  if (TargetIsCDNA(T.target)) {
    warp_size = 64;
  }

  ICHECK(T.block_size % warp_size == 0);
  auto [warp_m, warp_n] = ComputeWarpPartition(T.block_size / warp_size, T.target);
  std::stringstream ss;
  std::string op_name = "tl::gemm_ss";
  if (A.scope() == "local.fragment") {
    ICHECK(B.scope() != "local.fragment");
    op_name = "tl::gemm_rs";
  } else if (B.scope() == "local.fragment") {
    op_name = "tl::gemm_sr";
  }
  ss << op_name << "<" << M << ", " << N << ", " << K << ", ";
  ss << warp_m << ", " << warp_n << ", ";
  ss << trans_A << ", " << trans_B;
  if (TargetIsCDNA(T.target)) {
    // for cdna gemm, we need to specify kPack
    ss << ", " << kPack;
  }
  ss << ">";
  auto A_buffer = T.buffer_remap.count(A) ? T.buffer_remap[A] : A;
  auto B_buffer = T.buffer_remap.count(B) ? T.buffer_remap[B] : B;
  auto C_buffer = T.buffer_remap[C];

  Array<PrimExpr> new_args;
  new_args.push_back(StringImm(ss.str()));
  new_args.push_back(A_buffer.access_ptr(1));
  new_args.push_back(B_buffer.access_ptr(1));
  new_args.push_back(C_buffer.access_ptr(3));
  auto new_call = Call(DataType::Handle(), builtin::call_extern(), new_args);
  return Evaluate(new_call);
}

LayoutMap Gemm::InferLayout(const LayoutInferArgs& T, InferLevel level) {
  if (completed_) return {};
  LayoutMap results;
  ICHECK(C.scope() == "local.fragment");

  if (TargetIsVolta(T.target)) {
    const int warp_size = 32;
    auto [warp_m, warp_n] = ComputeWarpPartition(T.block_size / warp_size, T.target);
    auto fragment = makeGemmVoltaFragmentC(M, N, M / warp_m, N / warp_n, C->dtype.bits());
    results.Set(C, fragment);
    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
      results.Set(A, makeGemmVoltaABLayout(*as_const_int(A->shape[0]), *as_const_int(A->shape[1]),
                                           true, trans_A ? 1 : 2));
    } else if (A.scope() == "local.fragment") {
      ICHECK(trans_A == false);
      results.Set(A, makeGemmVoltaFragmentA(M, N, K, M / warp_m, N / warp_n));
    } else {
      ICHECK(0);
    }

    ICHECK(B.scope() == "shared" || B.scope() == "shared.dyn");
    results.Set(B, makeGemmVoltaABLayout(*as_const_int(B->shape[0]), *as_const_int(B->shape[1]),
                                         false, trans_B ? 2 : 1));
  } else if (TargetIsAmpere(T.target) || TargetIsTuring(T.target)) {
    const int warp_size = 32;
    auto [warp_m, warp_n] = ComputeWarpPartition(T.block_size / warp_size, T.target);
    auto fragment = makeGemmFragmentC(M, N, M / warp_m, N / warp_n, C->dtype.bits());
    results.Set(C, fragment);

    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
      results.Set(A, makeGemmABLayout(*as_const_int(A->shape[0]), *as_const_int(A->shape[1]),
                                      A->dtype.bits(), trans_A ? 1 : 2));
    } else if (A.scope() == "local.fragment") {
      ICHECK(trans_A == false);
      results.Set(A, makeGemmFragmentA(M, N, K, M / warp_m, N / warp_n, A->dtype.bits()));
    } else {
      ICHECK(0);
    }
    if (B.scope() == "shared" || B.scope() == "shared.dyn") {
      results.Set(B, makeGemmABLayout(*as_const_int(B->shape[0]), *as_const_int(B->shape[1]),
                                      B->dtype.bits(), trans_B ? 2 : 1));
    } else if (B.scope() == "local.fragment") {
      ICHECK(trans_B == false);
      results.Set(B, makeGemmFragmentB(M, N, K, M / warp_m, N / warp_n));
    } else {
      ICHECK(0);
    }
  } else if (TargetIsHopper(T.target)) {
    const int warp_size = 32;
    auto [warp_m, warp_n] = ComputeWarpPartition(T.block_size / warp_size, T.target);
    auto fragment = makeGemmFragmentCHopper(M, N, M / warp_m, N / warp_n, C->dtype.bits());
    results.Set(C, fragment);
    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
      results.Set(A, makeGemmABLayout(*as_const_int(A->shape[0]), *as_const_int(A->shape[1]),
                                      A->dtype.bits(), trans_A ? 1 : 2));
    } else {
      ICHECK(trans_A == false);
      results.Set(A, makeGemmFragmentA(M, N, K, M / warp_m, N / warp_n, A->dtype.bits()));
    }
    if (B.scope() == "shared" || B.scope() == "shared.dyn") {
      results.Set(B, makeGemmABLayout(*as_const_int(B->shape[0]), *as_const_int(B->shape[1]),
                                      B->dtype.bits(), trans_B ? 2 : 1));
    } else {
      ICHECK(0) << "WGMMA only support B in shared.";
    }
  } else if (TargetIsCDNA(T.target)) {
    ICHECK(trans_B == true) << "Currently only support Transpose B for CDNA";

    const int warp_size = 64;
    auto [warp_m, warp_n] = ComputeWarpPartition(T.block_size / warp_size, T.target);

    auto fragment = makeGemmFragmentCCDNA(M, N, M / warp_m, N / warp_n, C->dtype.bits());

    results.Set(C, fragment);

    if (A.scope() == "shared" || A.scope() == "shared.dyn") {
      
      // Make Linear Memory Access Layout
      // auto shared_layout =
      //     makeGemmLayoutLinear(*as_const_int(A->shape[0]), *as_const_int(A->shape[1]));

      // Make Swizzle or Pad Layout
      auto shared_layout = makeGemmABLayoutCDNA(*as_const_int(A->shape[0]), *as_const_int(A->shape[1]),
                                      A->dtype.bits(), kPack);
      results.Set(A, shared_layout);
    } else if (A.scope() == "local.fragment") {
      results.Set(A, makeGemmFragmentACDNA(M, N, K, M / warp_m, N / warp_n, trans_A));
    } else {
      ICHECK(0);
    }
    if (B.scope() == "shared" || B.scope() == "shared.dyn") {
      // Make Linear Memory Access Layout
      // auto shared_layout =
      //     makeGemmLayoutLinear(*as_const_int(B->shape[0]), *as_const_int(B->shape[1]));

      // Make Swizzle or Pad Layout
      auto shared_layout = makeGemmABLayoutCDNA(*as_const_int(B->shape[0]), *as_const_int(B->shape[1]),
                                      B->dtype.bits(), kPack);

      results.Set(B, shared_layout);
    } else if (B.scope() == "local.fragment") {
      results.Set(B, makeGemmFragmentB(M, N, K, M / warp_m, N / warp_n));
    } else {
      ICHECK(0);
    }
  } else {
    ICHECK(0) << "Not supported " << T.target->str();
  }
  completed_ = true;
  return results;
}

TIR_REGISTER_TL_OP(Gemm, gemm)
    .set_num_inputs(5)
    .set_attr<TCallEffectKind>("TCallEffectKind", Integer(CallEffectKind::kOpaque));

}  // namespace tl
}  // namespace tvm