test_tilelang_gemm_mfma_intrinsic.py 7.72 KB
Newer Older
1
2
3
4
5
6
7
8
9
import torch
import tilelang.testing
from tilelang import tvm as tvm
import tilelang.language as T
from tilelang.intrinsics import make_mfma_swizzle_layout as make_swizzle_layout
from tilelang.intrinsics.mfma_macro_generator import (
    MatrixCoreIntrinEmitter,)
from tilelang.transform import simplify_prim_func

10
tilelang.testing.set_random_seed(0)
11
12
13
14
15
16
17
18
19
20


@simplify_prim_func
def tl_matmul(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
21
22
23
    a_transposed=False,
    b_transposed=True,
    k_pack=1,
24
25
26
27
28
29
30
31
32
33
34
35
36
):
    assert in_dtype in [
        "float16",
        "int8",
    ], "Currently only float16 and int8 are supported"
    assert out_dtype in [
        "float16",
        "float32",
        "int32",
    ], "Currently only float16, float32 and int32 are supported"

    micro_size_x = micro_size_y = micro_size_k = 16

37
    if in_dtype in {"float8_e4m3fnuz", "int8"}:
38
39
        micro_size_k = 32

40
41
42
43
    block_row_warps = 2
    block_col_warps = 2
    warp_row_tiles = 32
    warp_col_tiles = 32
44
    chunk = 32
45
    shared_scope = "shared"
46
47
48
49
50
51
    cache_write_shared = False

    block_M = block_row_warps * warp_row_tiles
    block_N = block_col_warps * warp_col_tiles
    block_K = chunk

52
53
54
55
    A_shape = (K, M) if a_transposed else (M, K)
    B_shape = (N, K) if b_transposed else (K, N)
    A_shared_shape = (block_K, block_M) if a_transposed else (block_M, block_K)
    B_shared_shape = (block_N, block_K) if b_transposed else (block_K, block_N)
56
57
58
59
60
61
62
63
    C_shared_shape = (
        block_N // micro_size_y,
        micro_size_x,
        micro_size_y,
    )

    warp_size = 64
    threads = warp_size * (block_row_warps * block_col_warps)
64
65
    local_size_a = (k_pack * micro_size_x * micro_size_k) // warp_size
    local_size_b = (k_pack * micro_size_y * micro_size_k) // warp_size
66
67
68
69
70
71
72
73
74
    local_size_c = (micro_size_x * micro_size_y) // warp_size
    warp_rows = warp_row_tiles // micro_size_x
    warp_cols = warp_col_tiles // micro_size_y

    # MMA Wrapper to Auto Generate Code for MMA
    mfma_emitter = MatrixCoreIntrinEmitter(
        a_dtype=in_dtype,
        b_dtype=in_dtype,
        accum_dtype=accum_dtype,
75
76
        a_transposed=a_transposed,
        b_transposed=b_transposed,
77
78
79
80
81
        block_row_warps=block_row_warps,
        block_col_warps=block_col_warps,
        warp_row_tiles=warp_row_tiles,
        warp_col_tiles=warp_col_tiles,
        chunk=chunk,
82
        k_pack=k_pack,
83
84
85
86
    )

    @T.prim_func
    def main(
87
88
89
            A: T.Tensor(A_shape, in_dtype),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):

            A_shared = T.alloc_shared(A_shared_shape, in_dtype, scope=shared_scope)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype, scope=shared_scope)
            C_shared = T.alloc_shared(C_shared_shape, out_dtype, scope=shared_scope)
            A_local = T.alloc_local((warp_rows * local_size_a), in_dtype)
            B_local = T.alloc_local((warp_cols * local_size_b), in_dtype)
            C_local = T.alloc_local((warp_rows * warp_cols * local_size_c), accum_dtype)

            T.annotate_layout({
                A_shared: make_swizzle_layout(A_shared),
                B_shared: make_swizzle_layout(B_shared),
            })

            # Improve L2 Cache
            T.use_swizzle(panel_size=10)

            T.clear(C_local)

            for ko in T.Pipelined((K // block_K), num_stages=0):

                # Load A into shared memory
113
114
115
116
                if a_transposed:
                    T.copy(A[ko * block_K, by * block_M], A_shared)
                else:
                    T.copy(A[by * block_M, ko * block_K], A_shared)
117
118

                # Load B into shared memory
119
120
121
122
                if b_transposed:
                    T.copy(B[bx * block_N, ko * block_K], B_shared)
                else:
                    T.copy(B[ko * block_K, bx * block_N], B_shared)
123

124
                for ki in T.serial(0, (block_K // (k_pack * micro_size_k))):
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

                    # Load A into fragment
                    mfma_emitter.ldmatrix_a(
                        A_local,
                        A_shared,
                        ki,
                    )

                    # Load B into fragment
                    mfma_emitter.ldmatrix_b(
                        B_local,
                        B_shared,
                        ki,
                    )

                    # Perform Matrix Multiplication
                    mfma_emitter.mfma(A_local, B_local, C_local)

            # Perform STMatrix
            if cache_write_shared:
                mfma_emitter.stmatrix(
                    C_local,
                    C_shared,
                )

                # Store shared into global
                for i, j in T.Parallel(block_M, block_N):
                    C[by * block_M + i, bx * block_N + j] = C_shared[
                        i // micro_size_x,
                        j // micro_size_y,
                        i % micro_size_x,
                        j % micro_size_y,
                    ]
            else:
                mfma_emitter.stmatrix(
                    C_local,
                    C,
                    pid_m=by,
                    pid_n=bx,
                )

    return main


169
170
171
172
173
174
175
176
177
178
179
180
def assert_tl_matmul_correctness(M,
                                 N,
                                 K,
                                 in_dtype,
                                 out_dtype,
                                 accum_dtype="float32",
                                 a_transposed=False,
                                 b_transposed=True,
                                 k_pack=1):
    matmul = tl_matmul(M, N, K, in_dtype, out_dtype, accum_dtype, a_transposed, b_transposed,
                       k_pack)
    print(matmul)
181
182
    kernel = tilelang.compile(matmul)
    src_code = kernel.get_kernel_source()
183
184
    # src_code is the generated cuda source
    assert src_code is not None
185
186
    A_shape = (K, M) if a_transposed else (M, K)
    B_shape = (N, K) if b_transposed else (K, N)
187
    if in_dtype == "int8":
188
189
        A = torch.randint(-128, 127, A_shape, device="cuda", dtype=torch.int8)
        B = torch.randint(-128, 127, B_shape, device="cuda", dtype=torch.int8)
190
    else:
191
192
        A = torch.rand(A_shape, device="cuda", dtype=getattr(torch, in_dtype))
        B = torch.rand(B_shape, device="cuda", dtype=getattr(torch, in_dtype))
193
194
    C = torch.zeros(M, N, device="cuda", dtype=getattr(torch, out_dtype))

195
    kernel(A, B, C)
196

197
    profiler = kernel.get_profiler()
198

199
    latency = profiler.do_bench()
200
201
202
203

    # Ensure that the latency is not None
    assert latency is not None

204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    if a_transposed and b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.T.to(torch.float32),
                             B.T.to(torch.float32)).to(getattr(torch, out_dtype))
    elif a_transposed and not b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.Tto(torch.float32),
                             B.to(torch.float32)).to(getattr(torch, out_dtype))
    elif not a_transposed and b_transposed:
        # Get Reference Result
        ref_c = torch.matmul(A.to(torch.float32),
                             B.T.to(torch.float32)).to(getattr(torch, out_dtype))
    else:
        # Get Reference Result
        ref_c = torch.matmul(A.to(torch.float32), B.to(torch.float32)).to(getattr(torch, out_dtype))

220
221
222
223
224
225
226
227
228
    print(C)
    print(ref_c)
    torch.testing.assert_close(C, ref_c, rtol=1e-2, atol=1e-2)


@tilelang.testing.requires_rocm
def test_assert_tl_matmul():
    assert_tl_matmul_correctness(128, 128, 128, "float16", "float16")
    assert_tl_matmul_correctness(128, 256, 256, "float16", "float32")
229
    assert_tl_matmul_correctness(128, 256, 256, "float16", "float32", k_pack=2)
230
231
232
233


if __name__ == "__main__":
    tilelang.testing.main()