example_gemv.py 11.1 KB
Newer Older
1
2
3
4
5
import argparse
import itertools
import tilelang as tl
import tilelang.language as T
from tvm import DataType
6
7
from tilelang.autotuner import autotune
from tilelang import jit
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24


def ref_program(A, B):
    return A @ B.T


def naive_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):

    @T.prim_func
    def main(
25
26
27
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N)) as bn:
            tn = T.get_thread_binding(0)  # tn = threadIdx.x
            A_shared = T.alloc_shared((BLOCK_K,), dtype)
            B_shared = T.alloc_shared((BLOCK_N, BLOCK_K), dtype)
            C_reg = T.alloc_local((1,), accum_dtype)
            T.clear(C_reg)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for tk in T.serial(BLOCK_K):
                    A_shared[tk] = A[bk * BLOCK_K + tk]
                    B_shared[tn, tk] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk]
                for tk in T.serial(BLOCK_K):
                    C_reg[0] += A_shared[tk].astype(accum_dtype) * B_shared[tn,
                                                                            tk].astype(accum_dtype)
            C[bn * BLOCK_N + tn] = C_reg[0]

    return main


def naive_splitk_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):

    @T.prim_func
    def main(
58
59
60
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, BLOCK_K)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((1,), dtype)
            B_local = T.alloc_local((1,), dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                A_local[0] = A[bk * BLOCK_K + tk]
                B_local[0] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk]
                C_accum[0] += A_local[0].astype(accum_dtype) * B_local[0].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


def splitk_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    TILE_K = T.ceildiv(BLOCK_K, reduce_threads)

    @T.prim_func
    def main(
95
96
97
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.serial(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


def splitk_gemv_vectorized(
    N: int,
    K: int,
    BLOCK_N: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    MAX_TRANSACTION_SIZE_IN_BITS = 128
    TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
    BLOCK_K = reduce_threads * TILE_K

    @T.prim_func
    def main(
135
136
137
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.vectorized(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


def splitk_gemv_vectorized_tvm(
    N: int,
    K: int,
    BLOCK_N: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    MAX_TRANSACTION_SIZE_IN_BITS = 128
    TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
    BLOCK_K = reduce_threads * TILE_K

    @T.prim_func
    def main(
175
176
177
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_accum = T.alloc_local((1,), accum_dtype)

            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.vectorized(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            C_reduced = T.alloc_local((1,), accum_dtype)
            with T.attr(
                    T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                    "reduce_scope",
                    T.reinterpret(T.uint64(0), dtype="handle"),
            ):
                T.evaluate(
                    T.tvm_thread_allreduce(
                        T.uint32(1),
                        C_accum[0],
                        True,
                        C_reduced[0],
                        tk,
                        dtype="handle",
                    ))

            C[bn * BLOCK_N + tn] = C_reduced[0]

    return main


def get_best_config(N, K):

    def get_configs():
        BLOCK_N = [2, 4, 8, 32, 64, 128]
        reduce_threads = [4, 8, 32]
        _configs = list(itertools.product(
            BLOCK_N,
            reduce_threads,
        ))
        configs = [{
            "BLOCK_N": c[0],
            "reduce_threads": c[1],
        } for c in _configs]
        return configs

    @autotune(
        configs=get_configs(),
        warmup=3,
        rep=20,
    )
    @jit(
        out_idx=[-1],
        target="auto",
    )
    def kernel(
        BLOCK_N=None,
        reduce_threads=None,
    ):
        dtype = "float16"
        accum_dtype = "float"
        MAX_TRANSACTION_SIZE_IN_BITS = 128
        TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
        BLOCK_K = reduce_threads * TILE_K

        @T.prim_func
        def main(
250
251
252
                A: T.Tensor((K,), dtype),
                B: T.Tensor((N, K), dtype),
                C: T.Tensor((N,), dtype),
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
        ):
            with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
                tn = T.get_thread_binding(0)
                tk = T.get_thread_binding(1)
                A_local = T.alloc_local((TILE_K,), dtype)
                B_local = T.alloc_local((TILE_K,), dtype)
                C_accum = T.alloc_local((1,), accum_dtype)

                T.clear(C_accum)
                for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                    for k in T.vectorized(TILE_K):
                        A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                        B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                    for k in T.serial(TILE_K):
                        C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(
                            accum_dtype)
                C_reduced = T.alloc_local((1,), accum_dtype)
                with T.attr(
                        T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                        "reduce_scope",
                        T.reinterpret(T.uint64(0), dtype="handle"),
                ):
                    T.evaluate(
                        T.tvm_thread_allreduce(
                            T.uint32(1),
                            C_accum[0],
                            True,
                            C_reduced[0],
                            tk,
                            dtype="handle",
                        ))

                C[bn * BLOCK_N + tn] = C_reduced[0]

        return main

    return kernel()


def check_correctness_and_bench(kernel, N, K, bench_ref=True):
    kernel = tl.compile(kernel, out_idx=-1)
    profiler = kernel.get_profiler()
    profiler.assert_allclose(lambda x, y: x @ y.T, atol=1e-2, rtol=1e-2)
    if bench_ref:
        latency = profiler.do_bench(lambda x, y: x @ y.T, warmup=500)
        print(f"Torch Latency: {latency} ms")
    latency = profiler.do_bench(kernel, warmup=500)
    print(f"TileLang Latency: {latency} ms\n")


303
def main():
304
305
306
    parser = argparse.ArgumentParser(description="GEMV Example")
    parser.add_argument("--n", type=int, default=1024, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=1024, help="Matrix dimension K")
307
    args, _ = parser.parse_known_args()
308
309
310
311
312
313
314
315
    N, K = args.n, args.k
    check_correctness_and_bench(naive_gemv(N, K, 128, 128), N, K)
    check_correctness_and_bench(naive_splitk_gemv(N, K, 32, 32), N, K)
    check_correctness_and_bench(splitk_gemv(N, K, 32, 32, 32), N, K)
    check_correctness_and_bench(splitk_gemv_vectorized(N, K, 2, 32), N, K)
    check_correctness_and_bench(splitk_gemv_vectorized_tvm(N, K, 2, 32), N, K)
    print("Test passed!")

316
317
    best_result = get_best_config(N, K)
    best_config = best_result.config
318
    kernel = splitk_gemv_vectorized_tvm(N, K, **best_config)
319
320
321
322
323
324
    kernel = tl.compile(kernel, out_idx=-1)
    profiler = kernel.get_profiler()
    latency = profiler.do_bench(lambda x, y: x @ y.T, warmup=500)
    print(f"Torch Latency: {latency} ms")
    latency = profiler.do_bench(kernel, warmup=500)
    print(f"TileLang Latency: {latency} ms\n")
325
326
327
328


if __name__ == "__main__":
    main()