example_gemv.py 11.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
import argparse
import itertools
import tilelang as tl
import tilelang.language as T
from tvm import DataType
from tilelang.autotuner import autotune, jit


def ref_program(A, B):
    return A @ B.T


def naive_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):

    @T.prim_func
    def main(
24
25
26
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N)) as bn:
            tn = T.get_thread_binding(0)  # tn = threadIdx.x
            A_shared = T.alloc_shared((BLOCK_K,), dtype)
            B_shared = T.alloc_shared((BLOCK_N, BLOCK_K), dtype)
            C_reg = T.alloc_local((1,), accum_dtype)
            T.clear(C_reg)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for tk in T.serial(BLOCK_K):
                    A_shared[tk] = A[bk * BLOCK_K + tk]
                    B_shared[tn, tk] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk]
                for tk in T.serial(BLOCK_K):
                    C_reg[0] += A_shared[tk].astype(accum_dtype) * B_shared[tn,
                                                                            tk].astype(accum_dtype)
            C[bn * BLOCK_N + tn] = C_reg[0]

    return main


def naive_splitk_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):

    @T.prim_func
    def main(
57
58
59
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, BLOCK_K)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((1,), dtype)
            B_local = T.alloc_local((1,), dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                A_local[0] = A[bk * BLOCK_K + tk]
                B_local[0] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk]
                C_accum[0] += A_local[0].astype(accum_dtype) * B_local[0].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


def splitk_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    TILE_K = T.ceildiv(BLOCK_K, reduce_threads)

    @T.prim_func
    def main(
94
95
96
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.serial(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


def splitk_gemv_vectorized(
    N: int,
    K: int,
    BLOCK_N: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    MAX_TRANSACTION_SIZE_IN_BITS = 128
    TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
    BLOCK_K = reduce_threads * TILE_K

    @T.prim_func
    def main(
134
135
136
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.vectorized(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


def splitk_gemv_vectorized_tvm(
    N: int,
    K: int,
    BLOCK_N: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    MAX_TRANSACTION_SIZE_IN_BITS = 128
    TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
    BLOCK_K = reduce_threads * TILE_K

    @T.prim_func
    def main(
174
175
176
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_accum = T.alloc_local((1,), accum_dtype)

            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.vectorized(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            C_reduced = T.alloc_local((1,), accum_dtype)
            with T.attr(
                    T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                    "reduce_scope",
                    T.reinterpret(T.uint64(0), dtype="handle"),
            ):
                T.evaluate(
                    T.tvm_thread_allreduce(
                        T.uint32(1),
                        C_accum[0],
                        True,
                        C_reduced[0],
                        tk,
                        dtype="handle",
                    ))

            C[bn * BLOCK_N + tn] = C_reduced[0]

    return main


def get_best_config(N, K):

    def get_configs():
        BLOCK_N = [2, 4, 8, 32, 64, 128]
        reduce_threads = [4, 8, 32]
        _configs = list(itertools.product(
            BLOCK_N,
            reduce_threads,
        ))
        configs = [{
            "BLOCK_N": c[0],
            "reduce_threads": c[1],
        } for c in _configs]
        return configs

    @autotune(
        configs=get_configs(),
        warmup=3,
        rep=20,
    )
    @jit(
        out_idx=[-1],
        supply_type=tl.TensorSupplyType.Integer,
        ref_prog=ref_program,
        skip_check=False,
        target="auto",
    )
    def kernel(
        BLOCK_N=None,
        reduce_threads=None,
    ):
        dtype = "float16"
        accum_dtype = "float"
        MAX_TRANSACTION_SIZE_IN_BITS = 128
        TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
        BLOCK_K = reduce_threads * TILE_K

        @T.prim_func
        def main(
252
253
254
                A: T.Tensor((K,), dtype),
                B: T.Tensor((N, K), dtype),
                C: T.Tensor((N,), dtype),
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
        ):
            with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
                tn = T.get_thread_binding(0)
                tk = T.get_thread_binding(1)
                A_local = T.alloc_local((TILE_K,), dtype)
                B_local = T.alloc_local((TILE_K,), dtype)
                C_accum = T.alloc_local((1,), accum_dtype)

                T.clear(C_accum)
                for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                    for k in T.vectorized(TILE_K):
                        A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                        B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                    for k in T.serial(TILE_K):
                        C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(
                            accum_dtype)
                C_reduced = T.alloc_local((1,), accum_dtype)
                with T.attr(
                        T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                        "reduce_scope",
                        T.reinterpret(T.uint64(0), dtype="handle"),
                ):
                    T.evaluate(
                        T.tvm_thread_allreduce(
                            T.uint32(1),
                            C_accum[0],
                            True,
                            C_reduced[0],
                            tk,
                            dtype="handle",
                        ))

                C[bn * BLOCK_N + tn] = C_reduced[0]

        return main

    return kernel()


def check_correctness_and_bench(kernel, N, K, bench_ref=True):
    kernel = tl.compile(kernel, out_idx=-1)
    profiler = kernel.get_profiler()
    profiler.assert_allclose(lambda x, y: x @ y.T, atol=1e-2, rtol=1e-2)
    if bench_ref:
        latency = profiler.do_bench(lambda x, y: x @ y.T, warmup=500)
        print(f"Torch Latency: {latency} ms")
    latency = profiler.do_bench(kernel, warmup=500)
    print(f"TileLang Latency: {latency} ms\n")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="GEMV Example")
    parser.add_argument("--n", type=int, default=1024, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=1024, help="Matrix dimension K")
    args = parser.parse_args()
    N, K = args.n, args.k
    check_correctness_and_bench(naive_gemv(N, K, 128, 128), N, K)
    check_correctness_and_bench(naive_splitk_gemv(N, K, 32, 32), N, K)
    check_correctness_and_bench(splitk_gemv(N, K, 32, 32, 32), N, K)
    check_correctness_and_bench(splitk_gemv_vectorized(N, K, 2, 32), N, K)
    check_correctness_and_bench(splitk_gemv_vectorized_tvm(N, K, 2, 32), N, K)
    print("Test passed!")

318
319
320
321
    best_result = get_best_config(N, K)
    best_latency = best_result.latency
    best_config = best_result.config
    ref_latency = best_result.ref_latency
322
323
324
325
326
327
328
    kernel = splitk_gemv_vectorized_tvm(N, K, *best_config)
    kernel = tl.compile(kernel, out_idx=-1)
    profiler = kernel.get_profiler()
    latency = profiler.do_bench(lambda x, y: x @ y.T, warmup=500)
    print(f"Torch Latency: {latency} ms")
    latency = profiler.do_bench(kernel, warmup=500)
    print(f"TileLang Latency: {latency} ms\n")