gemm_sm90.h 23.8 KB
Newer Older
1
2
3
4
// Copyright (c) Microsoft Corporation.
// Licensed under the MIT License.
#pragma once

5
#include <cute/arch/mma_sm80.hpp>
6
7
#include <cute/arch/mma_sm90.hpp>
#include <cute/atom/mma_atom.hpp>
8
9
#include <cutlass/arch/barrier.h>
#include <cutlass/cutlass.h>
10
#include <cutlass/gemm/collective/collective_builder.hpp>
11
12
13
14
15

#include "common.h"

namespace cute {

16
17
using namespace SM90;

18
namespace tl_wgmma {
19
20

using namespace cutlass::gemm::collective::detail; // ss_smem_selector
21

22
template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
23
24
          bool trans_B, bool clear_accum, typename A_type_raw,
          typename B_type_raw, typename C_type_raw>
25
class GemmTensorOp {
26
27
28
29
30
public:
  using A_type = conditional_t<std::is_same<A_type_raw, float>::value,
                               tfloat32_t, A_type_raw>;
  using B_type = conditional_t<std::is_same<B_type_raw, float>::value,
                               tfloat32_t, B_type_raw>;
31
32
  using C_type = C_type_raw;

33
34
35
36
  static constexpr GMMA::Major GmmaMajorA =
      trans_A ? GMMA::Major::MN : GMMA::Major::K;
  static constexpr GMMA::Major GmmaMajorB =
      trans_B ? GMMA::Major::K : GMMA::Major::MN;
37

38
  using SmemLayoutAtomA =
39
40
      decltype(ss_smem_selector<GmmaMajorA, A_type, Int<M / (num_warp_m / 4)>,
                                Int<K>>());
41
  using SmemLayoutAtomB =
42
43
      decltype(ss_smem_selector<GmmaMajorB, B_type, Int<N / num_warp_n>,
                                Int<K>>());
44

45
46
47
48
49
50
  using SmemLayoutA = decltype(tile_to_shape(
      SmemLayoutAtomA{}, Shape<Int<M>, Int<K>>{},
      conditional_t<trans_A, Step<_2, _1>, Step<_1, _2>>{}));
  using SmemLayoutB = decltype(tile_to_shape(
      SmemLayoutAtomB{}, Shape<Int<N>, Int<K>>{},
      conditional_t<trans_B, Step<_1, _2>, Step<_2, _1>>{}));
51

52
  static_assert(num_warp_m % 4 == 0, "num_warp_m must be a multiple of 4");
53

54
55
  template <int wg_wait = 0>
  static CUTE_DEVICE void body(A_type_raw *pA, B_type_raw *pB, C_type_raw *pC) {
56
    const int tid = threadIdx.x;
57
58
59
60
61
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    auto tiled_mma = make_tiled_mma(
62
63
64
65
        GMMA::ss_op_selector<
            A_type, B_type, C_type,
            Shape<Int<M / (num_warp_m / 4)>, Int<N / num_warp_n>, Int<K>>,
            GmmaMajorA, GmmaMajorB>(),
66
        Layout<Shape<Int<num_warp_m / 4>, Int<num_warp_n>, _1>>{});
67
68
69
    auto thr_mma = tiled_mma.get_thread_slice(tid);

    // Allocate registers for pipelining
70
71
    Tensor tCsA = thr_mma.partition_A(sA); // (MMA,MMA_M,MMA_K,PIPE)
    Tensor tCsB = thr_mma.partition_B(sB); // (MMA,MMA_N,MMA_K,PIPE)
72

73
74
    Tensor tCrA = thr_mma.make_fragment_A(tCsA); // (MMA,MMA_N,MMA_K,PIPE)
    Tensor tCrB = thr_mma.make_fragment_B(tCsB); // (MMA,MMA_M,MMA_N,PIPE)
75

76
77
78
    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
79
80
81

    warpgroup_fence_operand(acc);
    warpgroup_arrive();
82
83
84
    if constexpr (clear_accum) {
      tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
    }
85
86
87
88
89
90
91
92
93
    CUTLASS_PRAGMA_UNROLL
    for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
      // warpgroup_arrive();
      // (V,M) x (V,N) => (V,M,N)
      gemm(tiled_mma, tCrA(_, _, k_block), tCrB(_, _, k_block), acc);
      tiled_mma.accumulate_ = GMMA::ScaleOut::One;
    }

    warpgroup_commit_batch();
94
95
96
    if constexpr (wg_wait >= 0) {
      warpgroup_wait<wg_wait>();
    }
97
98
99
100
101
102
103
104
105
106
107
    warpgroup_fence_operand(acc);
    // warpgroup_fence_operand(acc);
    // warpgroup_arrive();

    // gemm(tiled_mma, tCrA(_, _, _), tCrB(_, _, _), acc);

    // warpgroup_commit_batch();
    // if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
    // warpgroup_fence_operand(acc);
  }

108
109
110
  template <int wg_wait = 0>
  static CUTE_DEVICE void body_rs(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
111
    // TODO: Move bar.sync out of body_rs
112
113
    // asm volatile("bar.sync %0, %1;" : : "r"(1), "r"(num_warp_m * num_warp_n *
    // 32));
114
    const int tid = threadIdx.x;
115
116
117
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    auto tiled_mma = make_tiled_mma(
118
119
120
121
        GMMA::rs_op_selector<
            A_type, B_type, C_type,
            Shape<Int<M / (num_warp_m / 4)>, Int<N / num_warp_n>, Int<K>>,
            GmmaMajorA, GmmaMajorB>(),
122
        Layout<Shape<Int<num_warp_m / 4>, Int<num_warp_n>, _1>>{});
123
124
125
    auto thr_mma = tiled_mma.get_thread_slice(tid);

    // Allocate registers for pipelining
126
127
128
129
130
131
132
133
    Tensor tCsB = thr_mma.partition_B(sB);       // (MMA,MMA_N,MMA_K,PIPE)
    Tensor tCrB = thr_mma.make_fragment_B(tCsB); // (MMA,MMA_M,MMA_N,PIPE)
    Tensor tCrA =
        make_tensor(make_rmem_ptr(reinterpret_cast<A_type *>(pA)),
                    partition_shape_A(tiled_mma, Shape<Int<M>, Int<K>>{}));
    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
134
135
136
137

    warpgroup_fence_operand(tCrA);
    warpgroup_fence_operand(acc);
    warpgroup_arrive();
138
139
140
    if constexpr (clear_accum) {
      tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
    }
141
142
143
144
145
146
147
148
    CUTLASS_PRAGMA_UNROLL
    for (int k_block = 0; k_block < size<2>(tCrA); ++k_block) {
      // warpgroup_arrive();
      // (V,M) x (V,N) => (V,M,N)
      gemm(tiled_mma, tCrA(_, _, k_block), tCrB(_, _, k_block), acc);
      tiled_mma.accumulate_ = GMMA::ScaleOut::One;
    }
    warpgroup_commit_batch();
149
150
151
    if constexpr (wg_wait >= 0) {
      warpgroup_wait<wg_wait>();
    }
152
153
154
155
156
157
158
159
160
    warpgroup_fence_operand(acc);
    warpgroup_fence_operand(tCrA);

    // warpgroup_fence_operand(acc);
    // warpgroup_arrive();

    // gemm(tiled_mma, tCrA(_, _, _), tCrB(_, _, _), acc);

    // warpgroup_commit_batch();
161

162
163
164
165
166
    // if constexpr (wg_wait >= 0) { warpgroup_wait<wg_wait>(); }
    // warpgroup_fence_operand(acc);
  }
};

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
} // namespace tl_wgmma

namespace tl_mma {

template <typename A_type, typename B_type, typename C_type, int num_warp_m,
          int num_warp_n>
struct DispatchInstruction;

using _X = Underscore;

#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 800))
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<half_t, half_t, half_t, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x16_F16F16F16F16_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x16_F32F16F16F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<bfloat16_t, bfloat16_t, float, num_warp_m,
                           num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x16_F32BF16BF16F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<tfloat32_t, tfloat32_t, float, num_warp_m,
                           num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x8_F32TF32TF32F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<int8_t, int8_t, int, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_16x8x32_S32S8S8S32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _X>;
};
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<double, double, double, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM80_8x8x4_F64F64F64F64_TN>;
  using MMA_Group = Tile<Int<num_warp_m * 16>, Int<num_warp_n * 16>, _X>;
};
#elif (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 750))
template <int num_warp_m, int num_warp_n>
struct DispatchInstruction<half_t, half_t, float, num_warp_m, num_warp_n> {
  using MMA = MMA_Atom<SM75_16x8x8_F32F16F16F32_TN>;
  using MMA_Group = Tile<_X, Int<num_warp_n * 16>, _16>;
};
#endif

template <int Bits, int N, int K, bool K_inner, typename Enable = void>
struct OperandTraits {
  // Primary template, use padded layout and default copy
  static constexpr int stride = K_inner ? K : N;
  static constexpr int padded =
      stride % (256 / Bits) == 0 ? stride + 128 / Bits : stride;
  using Layout = typename std::conditional<
      K_inner, Layout<Shape<Int<N>, Int<K>>, Shape<Int<padded>, _1>>,
      Layout<Shape<Int<N>, Int<K>>, Shape<_1, Int<padded>>>>::type;
  using Copy = DefaultCopy;
};

template <int N, int K>
struct OperandTraits<16, N, K, true,
                     typename std::enable_if<K % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<16, N, K, true,
                     typename std::enable_if<K % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<16, N, K, false,
                     typename std::enable_if<N % 64 == 32>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 3, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = SM75_U16x8_LDSM_T;
};

template <int N, int K>
struct OperandTraits<16, N, K, false,
                     typename std::enable_if<N % 64 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 3, 3>{}, Layout<Shape<_64, _8>, Stride<_1, _64>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = SM75_U16x8_LDSM_T;
};

template <int N, int K>
struct OperandTraits<32, N, K, true,
                     typename std::enable_if<K % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_8, _32>, Stride<_32, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<32, N, K, true,
                     typename std::enable_if<K % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_8, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<32, N, K, false,
                     typename std::enable_if<N % 32 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 2, 3>{}, Layout<Shape<_32, _8>, Stride<_1, _32>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

template <int N, int K>
struct OperandTraits<32, N, K, false,
                     typename std::enable_if<N % 32 == 16>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 3>{}, Layout<Shape<_16, _8>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = UniversalCopy<tfloat32_t>;
};

template <int N, int K>
struct OperandTraits<8, N, K, true,
                     typename std::enable_if<K % 128 == 64>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 4, 3>{}, Layout<Shape<_8, _64>, Stride<_64, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<8, N, K, true,
                     typename std::enable_if<K % 128 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<3, 4, 3>{}, Layout<Shape<_8, _128>, Stride<_128, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = SM75_U32x4_LDSM_N;
};

template <int N, int K>
struct OperandTraits<64, N, K, true,
                     typename std::enable_if<K % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 0, 4>{}, Layout<Shape<_4, _16>, Stride<_16, _1>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{}));
  using Copy = DefaultCopy;
};

template <int N, int K>
struct OperandTraits<64, N, K, false,
                     typename std::enable_if<N % 16 == 0>::type> {
  using LayoutAtom = decltype(composition(
      Swizzle<2, 2, 2>{}, Layout<Shape<_16, _4>, Stride<_1, _16>>{}));
  using Layout = decltype(tile_to_shape(LayoutAtom{}, Shape<Int<N>, Int<K>>{},
                                        Step<_2, _1>{}));
  using Copy = DefaultCopy;
};

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
344
345
          bool trans_B, bool clear_accum, typename A_type_raw,
          typename B_type_raw, typename C_type_raw>
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
class GemmTensorOp {
public:
  using A_type =
      typename std::conditional<std::is_same<A_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using B_type =
      typename std::conditional<std::is_same<B_type_raw, float>::value,
                                tfloat32_t, A_type_raw>::type;
  using C_type = C_type_raw;
  using Instruction =
      DispatchInstruction<A_type, B_type, C_type, num_warp_m, num_warp_n>;

  using OperandATraits =
      OperandTraits<sizeof_bits<A_type>::value, M, K, !trans_A>;
  using OperandBTraits =
      OperandTraits<sizeof_bits<B_type>::value, N, K, trans_B>;
  using SmemLayoutA = typename OperandATraits::Layout;
  using SmemLayoutB = typename OperandBTraits::Layout;
  using SmemCopyA = Copy_Atom<typename OperandATraits::Copy, A_type>;
  using SmemCopyB = Copy_Atom<typename OperandBTraits::Copy, B_type>;

  using TileMma = TiledMMA<typename Instruction::MMA,
                           Layout<Shape<Int<num_warp_m>, Int<num_warp_n>, _1>>,
                           typename Instruction::MMA_Group>;

  template <class... Args>
  static CUTE_DEVICE auto remove_swizzle(Layout<Args...> const &layout) {
    return layout;
  }
  // In fp16, when layout is KxN and n_warp is 1 and N % 64 == 0
  // the original layout fail to compile, currently using this as a workaround
  template <class... Args>
  static CUTE_DEVICE auto
  remove_swizzle(ComposedLayout<Args...> const &layout) {
    if constexpr (sizeof(A_type) == 2)
      return layout.layout_b();
    else
      return layout;
  }

  static CUTE_DEVICE void body(A_type_raw *pA, B_type_raw *pB, C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsA = thr_copy_A.partition_S(sA);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);
    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));

    // when layout is KxN and n_warp is 1, there seem to be a bug, use this as a
    // workaround
    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
415
416
417
    if constexpr (clear_accum) {
      tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
    }
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      copy(tiled_copy_A, tCsA(_, _, k), tCrA_copy_view(_, _, k));
      copy(tiled_copy_B, tCsB(_, _, k), tCrB_copy_view(_, _, k));
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_rs(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sB = make_tensor(make_smem_ptr(reinterpret_cast<B_type *>(pB)),
                            SmemLayoutB{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_B = make_tiled_copy_B(SmemCopyB{}, tiled_mma);
    auto thr_copy_B = tiled_copy_B.get_thread_slice(tid);

    Tensor tCrB = thr_mma.partition_fragment_B(sB);
    Tensor tCsB = thr_copy_B.partition_S(sB);

    Tensor tCrB_copy_view = thr_copy_B.retile_D(tCrB);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrA =
        make_tensor(make_rmem_ptr(reinterpret_cast<A_type *>(pA)),
                    partition_shape_A(tiled_mma, Shape<Int<M>, Int<K>>{}));

    auto tCrB_view = make_tensor(tCrB.data(), remove_swizzle(tCrB.layout()));
449
450
451
    if constexpr (clear_accum) {
      tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
    }
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    copy(tiled_copy_B, tCsB(_, _, 0), tCrB_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_B, tCsB(_, _, k + 1), tCrB_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA(_, _, k), tCrB_view(_, _, k), acc);
    }
  }

  static CUTE_DEVICE void body_sr(A_type_raw *pA, B_type_raw *pB,
                                  C_type_raw *pC) {
    const int tid = threadIdx.x;
    Tensor sA = make_tensor(make_smem_ptr(reinterpret_cast<A_type *>(pA)),
                            SmemLayoutA{});
    TileMma tiled_mma;
    auto thr_mma = tiled_mma.get_thread_slice(tid);
    auto tiled_copy_A = make_tiled_copy_A(SmemCopyA{}, tiled_mma);
    auto thr_copy_A = tiled_copy_A.get_thread_slice(tid);

    Tensor tCrA = thr_mma.partition_fragment_A(sA);
    Tensor tCsA = thr_copy_A.partition_S(sA);

    Tensor tCrA_copy_view = thr_copy_A.retile_D(tCrA);

    Tensor acc =
        make_tensor(make_rmem_ptr(reinterpret_cast<C_type *>(pC)),
                    partition_shape_C(tiled_mma, Shape<Int<M>, Int<N>>{}));
    Tensor tCrB =
        make_tensor(make_rmem_ptr(reinterpret_cast<B_type *>(pB)),
                    partition_shape_B(tiled_mma, Shape<Int<N>, Int<K>>{}));

    auto tCrA_view = make_tensor(tCrA.data(), remove_swizzle(tCrA.layout()));
485
486
487
    if constexpr (clear_accum) {
      tiled_mma.accumulate_ = GMMA::ScaleOut::Zero;
    }
488
489
490
491
492
493
494
495
496
497
498
499
500
    copy(tiled_copy_A, tCsA(_, _, 0), tCrA_copy_view(_, _, 0));
    CUTE_UNROLL
    for (int k = 0; k < size<2>(tCrA); ++k) {
      if (k < size<2>(tCrA) - 1) {
        copy(tiled_copy_A, tCsA(_, _, k + 1), tCrA_copy_view(_, _, k + 1));
      }
      gemm(tiled_mma, tCrA_view(_, _, k), tCrB(_, _, k), acc);
    }
  }
};

} // namespace tl_mma

501
} // namespace cute
502
503
504

namespace tl {

505
506
namespace tl_mma {

507
template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
508
509
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
510
511
512
CUTLASS_DEVICE void gemm_ss(A_type *pA, B_type *pB, C_type *accum) {
  using MMA =
      cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
513
                                 trans_B, clear_accum, A_type, B_type, C_type>;
514
  MMA::body(pA, pB, accum);
515
516
}

517
template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
518
519
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
520
521
522
CUTLASS_DEVICE void gemm_rs(A_type *pA, B_type *pB, C_type *accum) {
  using MMA =
      cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
523
                                 trans_B, clear_accum, A_type, B_type, C_type>;
524
525
526
527
  MMA::body_rs(pA, pB, accum);
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
528
529
          bool trans_B, bool clear_accum, typename A_type, typename B_type,
          typename C_type>
530
531
532
CUTLASS_DEVICE void gemm_sr(A_type *pA, B_type *pB, C_type *accum) {
  using MMA =
      cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n, trans_A,
533
                                 trans_B, clear_accum, A_type, B_type, C_type>;
534
535
536
537
538
539
  MMA::body_sr(pA, pB, accum);
}

} // namespace tl_mma

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
540
541
          bool trans_B, bool clear_accum = false, bool use_wgmma = true,
          int wg_wait = 0, typename A_type, typename B_type, typename C_type>
542
543
TL_DEVICE void gemm_ss(A_type *pA, B_type *pB, C_type *accum) {
  if constexpr (use_wgmma) {
544
545
546
    using MMA = cute::tl_wgmma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n,
                                             trans_A, trans_B, clear_accum,
                                             A_type, B_type, C_type>;
547
548
    MMA::body<wg_wait>(pA, pB, accum);
  } else {
549
550
551
    using MMA = cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n,
                                           trans_A, trans_B, clear_accum,
                                           A_type, B_type, C_type>;
552
553
554
555
556
    MMA::body(pA, pB, accum);
  }
}

template <int M, int N, int K, int num_warp_m, int num_warp_n, bool trans_A,
557
558
          bool trans_B, bool clear_accum = false, bool use_wgmma = true,
          int wg_wait = 0, typename A_type, typename B_type, typename C_type>
559
560
TL_DEVICE void gemm_rs(A_type *pA, B_type *pB, C_type *accum) {
  if constexpr (use_wgmma) {
561
562
563
    using MMA = cute::tl_wgmma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n,
                                             trans_A, trans_B, clear_accum,
                                             A_type, B_type, C_type>;
564
565
    MMA::body_rs<wg_wait>(pA, pB, accum);
  } else {
566
567
568
    using MMA = cute::tl_mma::GemmTensorOp<M, N, K, num_warp_m, num_warp_n,
                                           trans_A, trans_B, clear_accum,
                                           A_type, B_type, C_type>;
569
570
    MMA::body_rs(pA, pB, accum);
  }
571
572
}

573
template <int num_mma> TL_DEVICE void wait_wgmma() {
574
  cute::warpgroup_wait<num_mma>();
575
576
}

577
578
579
template <int NumMmaThreads> TL_DEVICE void warp_scheduler_barrier_sync() {
  cutlass::arch::NamedBarrier::sync(NumMmaThreads,
                                    cutlass::canonical_warp_group_idx() /*id*/);
580
581
}

582
template <int NumMmaThreads> TL_DEVICE void warp_scheduler_barrier_arrive() {
583
584
  static_assert(NumMmaThreads == 256 || NumMmaThreads == 384);
  if constexpr (NumMmaThreads == 256) {
585
586
    cutlass::arch::NamedBarrier::arrive(
        NumMmaThreads, (1 - cutlass::canonical_warp_group_idx()) /*id*/);
587
  } else {
588
589
590
591
592
593
594
595
596
597
    cutlass::arch::NamedBarrier::arrive(
        NumMmaThreads,
        (cutlass::canonical_warp_group_idx() <= 1
             ? cutlass::canonical_warp_group_idx() + 1
             : cutlass::canonical_warp_group_idx() + 1 - 3) /*id*/);
    cutlass::arch::NamedBarrier::arrive(
        NumMmaThreads,
        (cutlass::canonical_warp_group_idx() <= 0
             ? cutlass::canonical_warp_group_idx() + 2
             : cutlass::canonical_warp_group_idx() + 2 - 3) /*id*/);
598
599
600
  }
}

601
template <int NumMmaThreads> TL_DEVICE void mma_init() {
602
603
604
605
606
607
608
609
610
611
  static_assert(NumMmaThreads == 256 || NumMmaThreads == 384);
  if (cutlass::canonical_warp_group_idx() > 0) {
    cutlass::arch::NamedBarrier::arrive(NumMmaThreads, 0);
  }
  if constexpr (NumMmaThreads == 384) {
    if (cutlass::canonical_warp_group_idx() > 1) {
      cutlass::arch::NamedBarrier::arrive(NumMmaThreads, 1 /*id*/);
    }
  }
}
612
} // namespace tl