example_gemv.py 11 KB
Newer Older
1
2
3
4
5
import argparse
import itertools
import tilelang as tl
import tilelang.language as T
from tvm import DataType
6
7
from tilelang.autotuner import autotune
from tilelang import jit
8
9
10
11
12
13


def ref_program(A, B):
    return A @ B.T


14
@tl.jit(out_idx=[-1])
15
16
17
18
19
20
21
22
23
24
25
def naive_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):

    @T.prim_func
    def main(
26
27
28
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N)) as bn:
            tn = T.get_thread_binding(0)  # tn = threadIdx.x
            A_shared = T.alloc_shared((BLOCK_K,), dtype)
            B_shared = T.alloc_shared((BLOCK_N, BLOCK_K), dtype)
            C_reg = T.alloc_local((1,), accum_dtype)
            T.clear(C_reg)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for tk in T.serial(BLOCK_K):
                    A_shared[tk] = A[bk * BLOCK_K + tk]
                    B_shared[tn, tk] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk]
                for tk in T.serial(BLOCK_K):
                    C_reg[0] += A_shared[tk].astype(accum_dtype) * B_shared[tn,
                                                                            tk].astype(accum_dtype)
            C[bn * BLOCK_N + tn] = C_reg[0]

    return main


48
@tl.jit(out_idx=[-1])
49
50
51
52
53
54
55
56
57
58
59
def naive_splitk_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):

    @T.prim_func
    def main(
60
61
62
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, BLOCK_K)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((1,), dtype)
            B_local = T.alloc_local((1,), dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                A_local[0] = A[bk * BLOCK_K + tk]
                B_local[0] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk]
                C_accum[0] += A_local[0].astype(accum_dtype) * B_local[0].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


84
@tl.jit(out_idx=[-1])
85
86
87
88
89
90
91
92
93
94
95
96
97
def splitk_gemv(
    N: int,
    K: int,
    BLOCK_N: int,
    BLOCK_K: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    TILE_K = T.ceildiv(BLOCK_K, reduce_threads)

    @T.prim_func
    def main(
98
99
100
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.serial(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


124
@tl.jit(out_idx=[-1])
125
126
127
128
129
130
131
132
133
134
135
136
137
138
def splitk_gemv_vectorized(
    N: int,
    K: int,
    BLOCK_N: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    MAX_TRANSACTION_SIZE_IN_BITS = 128
    TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
    BLOCK_K = reduce_threads * TILE_K

    @T.prim_func
    def main(
139
140
141
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_shared = T.alloc_shared((BLOCK_N,), accum_dtype)
            C_accum = T.alloc_local((1,), accum_dtype)
            if tk == 0:
                C_shared[tn] = 0
            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.vectorized(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            T.atomic_add(C_shared[tn], C_accum[0])
            C[bn * BLOCK_N + tn] = C_shared[tn]

    return main


165
@tl.jit(out_idx=[-1])
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def splitk_gemv_vectorized_tvm(
    N: int,
    K: int,
    BLOCK_N: int,
    reduce_threads: int,
    dtype: str = "float16",
    accum_dtype: str = "float",
):
    MAX_TRANSACTION_SIZE_IN_BITS = 128
    TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
    BLOCK_K = reduce_threads * TILE_K

    @T.prim_func
    def main(
180
181
182
            A: T.Tensor((K,), dtype),
            B: T.Tensor((N, K), dtype),
            C: T.Tensor((N,), dtype),
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
    ):
        with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
            tn = T.get_thread_binding(0)
            tk = T.get_thread_binding(1)
            A_local = T.alloc_local((TILE_K,), dtype)
            B_local = T.alloc_local((TILE_K,), dtype)
            C_accum = T.alloc_local((1,), accum_dtype)

            T.clear(C_accum)
            for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                for k in T.vectorized(TILE_K):
                    A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                    B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                for k in T.serial(TILE_K):
                    C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(accum_dtype)
            C_reduced = T.alloc_local((1,), accum_dtype)
            with T.attr(
                    T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                    "reduce_scope",
                    T.reinterpret(T.uint64(0), dtype="handle"),
            ):
                T.evaluate(
                    T.tvm_thread_allreduce(
                        T.uint32(1),
                        C_accum[0],
                        True,
                        C_reduced[0],
                        tk,
                        dtype="handle",
                    ))

            C[bn * BLOCK_N + tn] = C_reduced[0]

    return main


def get_best_config(N, K):

    def get_configs():
222
223
224
225
        iter_params = dict(BLOCK_N=[2, 4, 8, 32, 64, 128], reduce_threads=[4, 8, 32])
        return [
            dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())
        ]
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

    @autotune(
        configs=get_configs(),
        warmup=3,
        rep=20,
    )
    @jit(
        out_idx=[-1],
        target="auto",
    )
    def kernel(
        BLOCK_N=None,
        reduce_threads=None,
    ):
        dtype = "float16"
        accum_dtype = "float"
        MAX_TRANSACTION_SIZE_IN_BITS = 128
        TILE_K = MAX_TRANSACTION_SIZE_IN_BITS // DataType(dtype).bits
        BLOCK_K = reduce_threads * TILE_K

        @T.prim_func
        def main(
248
249
250
                A: T.Tensor((K,), dtype),
                B: T.Tensor((N, K), dtype),
                C: T.Tensor((N,), dtype),
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
        ):
            with T.Kernel(T.ceildiv(N, BLOCK_N), threads=(BLOCK_N, reduce_threads)) as bn:
                tn = T.get_thread_binding(0)
                tk = T.get_thread_binding(1)
                A_local = T.alloc_local((TILE_K,), dtype)
                B_local = T.alloc_local((TILE_K,), dtype)
                C_accum = T.alloc_local((1,), accum_dtype)

                T.clear(C_accum)
                for bk in T.serial(T.ceildiv(K, BLOCK_K)):
                    for k in T.vectorized(TILE_K):
                        A_local[k] = A[bk * BLOCK_K + tk * TILE_K + k]
                        B_local[k] = B[bn * BLOCK_N + tn, bk * BLOCK_K + tk * TILE_K + k]
                    for k in T.serial(TILE_K):
                        C_accum[0] += A_local[k].astype(accum_dtype) * B_local[k].astype(
                            accum_dtype)
                C_reduced = T.alloc_local((1,), accum_dtype)
                with T.attr(
                        T.comm_reducer(lambda x, y: x + y, [T.Cast(accum_dtype, 0)]),
                        "reduce_scope",
                        T.reinterpret(T.uint64(0), dtype="handle"),
                ):
                    T.evaluate(
                        T.tvm_thread_allreduce(
                            T.uint32(1),
                            C_accum[0],
                            True,
                            C_reduced[0],
                            tk,
                            dtype="handle",
                        ))

                C[bn * BLOCK_N + tn] = C_reduced[0]

        return main

    return kernel()


def check_correctness_and_bench(kernel, N, K, bench_ref=True):
    profiler = kernel.get_profiler()
    profiler.assert_allclose(lambda x, y: x @ y.T, atol=1e-2, rtol=1e-2)
    if bench_ref:
        latency = profiler.do_bench(lambda x, y: x @ y.T, warmup=500)
        print(f"Torch Latency: {latency} ms")
    latency = profiler.do_bench(kernel, warmup=500)
    print(f"TileLang Latency: {latency} ms\n")


300
def main():
301
302
303
    parser = argparse.ArgumentParser(description="GEMV Example")
    parser.add_argument("--n", type=int, default=1024, help="Matrix dimension N")
    parser.add_argument("--k", type=int, default=1024, help="Matrix dimension K")
304
    args, _ = parser.parse_known_args()
305
306
307
308
309
310
311
312
    N, K = args.n, args.k
    check_correctness_and_bench(naive_gemv(N, K, 128, 128), N, K)
    check_correctness_and_bench(naive_splitk_gemv(N, K, 32, 32), N, K)
    check_correctness_and_bench(splitk_gemv(N, K, 32, 32, 32), N, K)
    check_correctness_and_bench(splitk_gemv_vectorized(N, K, 2, 32), N, K)
    check_correctness_and_bench(splitk_gemv_vectorized_tvm(N, K, 2, 32), N, K)
    print("Test passed!")

313
314
    best_result = get_best_config(N, K)
    best_config = best_result.config
315
    kernel = splitk_gemv_vectorized_tvm(N, K, **best_config)
316
317
318
319
320
    profiler = kernel.get_profiler()
    latency = profiler.do_bench(lambda x, y: x @ y.T, warmup=500)
    print(f"Torch Latency: {latency} ms")
    latency = profiler.do_bench(kernel, warmup=500)
    print(f"TileLang Latency: {latency} ms\n")
321
322
323
324


if __name__ == "__main__":
    main()