example_mha_bwd_wgmma_pipelined.py 21.4 KB
Newer Older
1
2
3
4
5
6
7
8
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import argparse


9
10
11
12
@tilelang.jit(
    out_idx=[3, 4], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
13
def flashattn_fwd(batch, heads, seq_len, dim, is_causal, block_M, block_N):
14
15
16
17
18
19
20
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape = [batch, seq_len, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
21
22
23
24
25
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            Output: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=128) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
45

46
47
            loop_range = (
                T.ceildiv(
48
                    (bx + 1) * block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N))
49
50
            for k in T.Pipelined(loop_range, num_stages=1):
                T.copy(K[bz, k * block_N:(k + 1) * block_N, by, :], K_shared)
51
                if is_causal:
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                     -T.infinity(acc_s.dtype))
                else:
                    T.clear(acc_s)
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(V[bz, k * block_N:(k + 1) * block_N, by, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


82
83
84
85
@tilelang.jit(
    out_idx=[2], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
86
87
88
89
90
91
92
93
def flashattn_bwd_preprocess(batch, heads, seq_len, dim):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
94
95
96
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim, blk)):
                T.copy(O[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, l, h, d: [b, l // 8, h, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


121
122
123
124
@tilelang.jit(
    out_idx=[1], pass_configs={
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
    })
125
126
127
128
129
130
131
132
def flashattn_bwd_postprocess(batch, heads, seq_len, dim):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
133
134
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
135
136
137
138
139
140
141
142
143
144
145
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, bx * blk:(bx + 1) * blk, by, :],
                dQ_out[bz, bx * blk:(bx + 1) * blk, by, :],
            )

    return flash_bwd_post


146
147
148
@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
def flashattn_bwd_atomic_add(batch,
                             heads,
                             seq_len,
                             dim,
                             is_causal,
                             block_M,
                             block_N,
                             threads=256,
                             num_stages=2):
    sm_scale = (1.0 / dim)**0.5
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape = [batch, seq_len, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dK: T.Tensor(shape, accum_dtype),  # type: ignore
            dV: T.Tensor(shape, accum_dtype),  # type: ignore
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim], dtype)
            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)
            dk_shared = T.alloc_shared([block_M, dim], accum_dtype)
            dv_shared = T.alloc_shared([block_M, dim], accum_dtype)

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx, :], V_shared)
            T.clear(dv)
            T.clear(dk)
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
            loop_ed = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(
                    K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow, wg_wait=-1)
                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                if is_causal:
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(
                    V_shared,
                    do,
                    dsT,
                    transpose_B=True,
                    policy=T.GemmWarpPolicy.FullRow,
                    wg_wait=-1)
                T.wait_wgmma(1)
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow, wg_wait=-1)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.wait_wgmma(0)
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow, wg_wait=1)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True, wg_wait=1)
                T.wait_wgmma(0)
                for i, j in T.Parallel(block_N, dim):
                    if k * block_N + i < seq_len:
                        T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
            T.copy(dv, dv_shared)
            T.atomic_add(dV[bz, by * block_M:(by + 1) * block_M, bx, :], dv_shared)
            T.copy(dk, dk_shared)
            T.atomic_add(dK[bz, by * block_M:(by + 1) * block_M, bx, :], dk_shared)

    return flash_bwd


@tilelang.jit(pass_configs={
    tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
})
def flashattn_bwd_split(batch,
                        heads,
                        seq_len,
                        dim,
                        is_causal,
                        block_M,
                        block_N,
                        threads=256,
                        num_stages=2):
264
265
266
267
268
269
270
271
    sm_scale = (1.0 / dim)**0.5
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape = [batch, seq_len, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
272
273
274
275
276
277
278
279
280
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dK: T.Tensor(shape, dtype),  # type: ignore
            dV: T.Tensor(shape, dtype),  # type: ignore
281
    ):
282
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=threads) as (bx, by, bz):
283
284
285
286
287
288
289
290
291
292
293
294
295
296
            K_shared = T.alloc_shared([block_M, dim], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            q = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim], dtype)
            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)
297
298
            dv_shared = T.alloc_shared([block_M, dim], dtype)
            dk_shared = T.alloc_shared([block_M, dim], dtype)
299
300
301
302
303
304
305
306
307
308
309
310

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx, :], V_shared)
            T.clear(dv)
            T.clear(dk)
311
            loop_st = T.floordiv(by * block_M, block_N) if is_causal else 0
312
            loop_ed = T.ceildiv(seq_len, block_N)
313
            for k in T.Pipelined(loop_st, loop_ed, num_stages=num_stages):
314
315
316
317
318
319
320
321
322
323
324
325
326
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(
                    K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow, wg_wait=-1)
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(
                    V_shared,
                    do,
                    dsT,
                    transpose_B=True,
                    policy=T.GemmWarpPolicy.FullRow,
                    wg_wait=-1)
327
                T.wait_wgmma(1)
328
329
330
331

                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
332
                if is_causal:
333
334
335
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
336
                T.wait_wgmma(0)
337
338
339
340
341
342
343
344
345
346
347
348
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow, wg_wait=-1)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow, wg_wait=1)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True, wg_wait=1)
349
                T.wait_wgmma(0)
350
351
352
353
354
355
356
357
358
359
360
361
362
363
                for i, j in T.Parallel(block_N, dim):
                    if k * block_N + i < seq_len:
                        T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
            T.copy(dv, dv_shared)
            T.copy(dk, dk_shared)
            T.copy(dv_shared, dV[bz, by * block_M:(by + 1) * block_M, bx, :])
            T.copy(dk_shared, dK[bz, by * block_M:(by + 1) * block_M, bx, :])

    return flash_bwd


class _attention(torch.autograd.Function):

    @staticmethod
364
    def forward(ctx, q, k, v, causal, use_atomic=True):
365
366
367
        BATCH, N_CTX, H, D_HEAD = q.shape
        block_M = 64
        block_N = 64 if D_HEAD <= 128 else 32
368
        mod = flashattn_fwd(BATCH, H, N_CTX, D_HEAD, causal, block_M, block_N)
369
370
371
        o, lse = mod(q, k, v)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
372
        ctx.use_atomic = use_atomic
373
374
375
376
377
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
378
        BATCH, N_CTX, H, D_HEAD = q.shape
379
380
381
382
383
384
385

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, o = [maybe_contiguous(x) for x in (do, q, k, v, o)]
386
387
        block_M = 128
        block_N = 128 if D_HEAD <= 64 else 32
388
389
        mod_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD)
        mod_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD)
390
        delta = mod_prep(o, do)
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

        if ctx.use_atomic:
            mod = flashattn_bwd_atomic_add(
                BATCH, H, N_CTX, D_HEAD, ctx.causal, block_M, block_N, threads=256, num_stages=2)
            shape = [BATCH, N_CTX, H, D_HEAD]
            dq = torch.zeros(shape, dtype=torch.float32, device=q.device)
            dk = torch.zeros(shape, dtype=torch.float32, device=q.device)
            dv = torch.zeros(shape, dtype=torch.float32, device=q.device)
            mod(q, k, v, do, lse, delta, dq, dk, dv)
            dq = mod_post(dq)
            dk = dk.to(torch.float16)
            dv = dv.to(torch.float16)
        else:
            mod = flashattn_bwd_split(
                BATCH, H, N_CTX, D_HEAD, ctx.causal, block_M, block_N, threads=256, num_stages=2)
            shape = [BATCH, N_CTX, H, D_HEAD]
            dq = torch.zeros(shape, dtype=torch.float32, device=q.device)
            dk = torch.empty(shape, dtype=torch.float16, device=q.device)
            dv = torch.empty(shape, dtype=torch.float16, device=q.device)
            mod(q, k, v, do, lse, delta, dq, dk, dv)
            dq = mod_post(dq)

        return dq, dk, dv, None, None
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432


attention = _attention.apply


def ref_program(Q, K, V, is_causal):
    dim = Q.size(-1)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


433
434
435
436
437
438
def main(
    BATCH: int = 8,
    H: int = 32,
    N_CTX: int = 1024,
    D_HEAD: int = 64,
    causal: bool = False,
439
    use_atomic: bool = True,
440
):
441
    print(f"Test with use_atomic: {use_atomic}")
442
443
    flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD
    total_flops = 5 * flops_per_matmul
444
    if causal:
445
446
447
448
449
450
451
        total_flops *= 0.5
    Q = (
        torch.empty(BATCH, N_CTX, H, D_HEAD, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    K = torch.empty_like(Q).normal_().requires_grad_()
    V = torch.empty_like(Q).normal_().requires_grad_()
    dO = torch.randn_like(Q)
452
    O = attention(Q, K, V, causal, use_atomic)
453
454
455
456
457
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None

458
    O_ref = ref_program(Q, K, V, causal)
459
460
461
462
463
464
465
466
467
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None

    assert torch.allclose(O, O_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dV, dV_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dK, dK_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dQ, dQ_ref, rtol=1e-2, atol=1e-2)
468
    print('All checks passed.✅')
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483

    def run():
        O_ref.backward(dO, retain_graph=True)

    def run1():
        O.backward(dO, retain_graph=True)

    from tilelang.profiler import do_bench

    latency = do_bench(run, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(run1, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
484
485
486
487
488
489
490
491


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='Batch size')
    parser.add_argument('--h', type=int, default=32, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=1024, help='Context size')
    parser.add_argument('--d_head', type=int, default=64, help='Head dimension')
492
493
494
495
496
    parser.add_argument('--causal', action='store_true', help='Causal flag')
    parser.add_argument(
        '--use_atomic', action='store_true', default=False, help='Use atomic add for dK/dV')
    parser.add_argument(
        '--use_split', action='store_true', default=False, help='Use split for dK/dV')
497
    args = parser.parse_args()
498
499
500
501
502
503
504
505
506
507
508

    # Handle backward compatibility and logic
    if args.use_split:
        use_atomic = False
    elif args.use_atomic:
        use_atomic = True
    else:
        # Default: use atomic
        use_atomic = True

    main(args.batch, args.h, args.n_ctx, args.d_head, args.causal, use_atomic)