example_mha_bwd_wgmma_pipelined.py 14.9 KB
Newer Older
1
2
3
4
5
6
7
8
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import argparse


9
10
@tilelang.jit(out_idx=[3, 4])
def flashattn_fwd(batch, heads, seq_len, dim, is_causal, block_M, block_N):
11
12
13
14
15
16
17
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape = [batch, seq_len, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_fwd(
18
19
20
21
22
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            Output: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=128) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

            T.annotate_layout({Q_shared: tilelang.layout.make_swizzled_layout(Q_shared)})
            T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
            T.fill(scores_max, -T.infinity(accum_dtype))
42

43
44
            loop_range = (
                T.ceildiv(
45
                    (bx + 1) * block_M, block_N) if is_causal else T.ceildiv(seq_len, block_N))
46
47
            for k in T.Pipelined(loop_range, num_stages=1):
                T.copy(K[bz, k * block_N:(k + 1) * block_N, by, :], K_shared)
48
                if is_causal:
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
                    for i, j in T.Parallel(block_M, block_N):
                        acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                     -T.infinity(acc_s.dtype))
                else:
                    T.clear(acc_s)
                T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)
                T.copy(V[bz, k * block_N:(k + 1) * block_N, by, :], V_shared)
                T.copy(scores_max, scores_max_prev)
                T.reduce_max(acc_s, scores_max, dim=1, clear=False)
                for i in T.Parallel(block_M):
                    scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] *= scores_scale[i]
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
                T.copy(acc_s, acc_s_cast)
                T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)
                T.reduce_sum(acc_s, scores_sum, dim=1)
                for i in T.Parallel(block_M):
                    logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])
            for i in T.Parallel(block_M):
                logsum[i] = T.log2(logsum[i]) + scores_max[i] * scale
            T.copy(logsum, lse[bz, by, bx * block_M:(bx + 1) * block_M])

    return flash_fwd


79
@tilelang.jit(out_idx=[2])
80
81
82
83
84
85
86
87
def flashattn_bwd_preprocess(batch, heads, seq_len, dim):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim]
    blk = 32

    @T.prim_func
    def flash_bwd_prep(
88
89
90
            O: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, blk), batch) as (bx, by, bz):
            o = T.alloc_fragment([blk, blk], dtype)
            do = T.alloc_fragment([blk, blk], dtype)
            acc = T.alloc_fragment([blk, blk], accum_dtype)
            delta = T.alloc_fragment([blk], accum_dtype)
            T.clear(acc)
            for k in range(T.ceildiv(dim, blk)):
                T.copy(O[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], o)
                T.copy(dO[bz, by * blk:(by + 1) * blk, bx, k * blk:(k + 1) * blk], do)
                for i, j in T.Parallel(blk, blk):
                    acc[i, j] += o[i, j] * do[i, j]
            T.reduce_sum(acc, delta, 1)
            T.copy(delta, Delta[bz, bx, by * blk:(by + 1) * blk])

    return flash_bwd_prep


def make_dq_layout(dQ):
    # atomicAdd can not be vectorized, so we need to reorder dq to match the 8x8 gemm fragment
    return T.Layout(dQ.shape,
                    lambda b, l, h, d: [b, l // 8, h, d // 8, (d % 2), 4 * (l % 8) + (d % 8) // 2])


115
@tilelang.jit(out_idx=[1])
116
117
118
119
120
121
122
123
def flashattn_bwd_postprocess(batch, heads, seq_len, dim):
    dtype = "float16"
    accum_dtype = "float"
    shape = [batch, seq_len, heads, dim]
    blk = 64

    @T.prim_func
    def flash_bwd_post(
124
125
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dQ_out: T.Tensor(shape, dtype),  # type: ignore
126
127
128
129
130
131
132
133
134
135
136
    ):
        with T.Kernel(T.ceildiv(seq_len, blk), heads, batch, threads=128) as (bx, by, bz):
            T.annotate_layout({dQ: make_dq_layout(dQ)})
            T.copy(
                dQ[bz, bx * blk:(bx + 1) * blk, by, :],
                dQ_out[bz, bx * blk:(bx + 1) * blk, by, :],
            )

    return flash_bwd_post


137
@tilelang.jit
138
139
140
141
142
143
144
145
146
def flashattn_bwd(batch, heads, seq_len, dim, is_casual, block_M, block_N):
    sm_scale = (1.0 / dim)**0.5
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape = [batch, seq_len, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

    @T.prim_func
    def flash_bwd(
147
148
149
150
151
152
153
154
155
            Q: T.Tensor(shape, dtype),  # type: ignore
            K: T.Tensor(shape, dtype),  # type: ignore
            V: T.Tensor(shape, dtype),  # type: ignore
            dO: T.Tensor(shape, dtype),  # type: ignore
            lse: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            Delta: T.Tensor([batch, heads, seq_len], accum_dtype),  # type: ignore
            dQ: T.Tensor(shape, accum_dtype),  # type: ignore
            dK: T.Tensor(shape, dtype),  # type: ignore
            dV: T.Tensor(shape, dtype),  # type: ignore
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    ):
        with T.Kernel(heads, T.ceildiv(seq_len, block_M), batch, threads=256) as (bx, by, bz):
            K_shared = T.alloc_shared([block_M, dim], dtype)
            dsT_shared = T.alloc_shared([block_M, block_N], dtype)
            # should not store K to local if dim is large
            # K_local = T.alloc_fragment([block_M, dim], dtype)
            # K_local_T = T.alloc_fragment([block_M, dim], dtype)
            # V_local = T.alloc_fragment([block_M, dim], dtype)
            q = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_M, dim], dtype)
            qkT = T.alloc_fragment([block_M, block_N], accum_dtype)
            dsT = T.alloc_fragment([block_M, block_N], accum_dtype)
            qkT_cast = T.alloc_fragment([block_M, block_N], dtype)
            dsT_cast = T.alloc_fragment([block_M, block_N], dtype)
            lse_shared = T.alloc_shared([block_N], accum_dtype)
            delta = T.alloc_shared([block_N], accum_dtype)
            do = T.alloc_shared([block_N, dim], dtype)
            dv = T.alloc_fragment([block_M, dim], accum_dtype)
            dk = T.alloc_fragment([block_M, dim], accum_dtype)
            dq = T.alloc_fragment([block_N, dim], accum_dtype)
            dv_shared = T.alloc_shared([block_N, dim], dtype)
            dk_shared = T.alloc_shared([block_N, dim], dtype)

            T.annotate_layout({
                dQ: make_dq_layout(dQ),
                K_shared: tilelang.layout.make_swizzled_layout(K_shared),
                dv_shared: tilelang.layout.make_swizzled_layout(dv_shared),
                dk_shared: tilelang.layout.make_swizzled_layout(dk_shared),
            })

            T.copy(K[bz, by * block_M:(by + 1) * block_M, bx, :], K_shared)
            T.copy(V[bz, by * block_M:(by + 1) * block_M, bx, :], V_shared)
            T.clear(dv)
            T.clear(dk)
            loop_st = T.floordiv(by * block_M, block_N) if is_casual else 0
            loop_ed = T.ceildiv(seq_len, block_N)
            for k in T.Pipelined(loop_st, loop_ed, num_stages=2):
                T.copy(Q[bz, k * block_N:(k + 1) * block_N, bx, :], q)
                T.clear(qkT)
                T.gemm(
                    K_shared, q, qkT, transpose_B=True, policy=T.GemmWarpPolicy.FullRow, wg_wait=-1)
                T.copy(dO[bz, k * block_N:(k + 1) * block_N, bx, :], do)
                T.clear(dsT)
                T.gemm(
                    V_shared,
                    do,
                    dsT,
                    transpose_B=True,
                    policy=T.GemmWarpPolicy.FullRow,
                    wg_wait=-1)
206
                T.wait_wgmma(1)
207
208
209
210
211
212
213
214

                T.copy(lse[bz, bx, k * block_N:(k + 1) * block_N], lse_shared)
                for i, j in T.Parallel(block_M, block_N):
                    qkT[i, j] = T.exp2(qkT[i, j] * scale - lse_shared[j])
                if is_casual:
                    for i, j in T.Parallel(block_M, block_N):
                        qkT[i, j] = T.if_then_else(by * block_M + i <= k * block_N + j, qkT[i, j],
                                                   0)
215
                T.wait_wgmma(0)
216
217
218
219
220
221
222
223
224
225
226
227
                T.copy(qkT, qkT_cast)
                T.gemm(qkT_cast, do, dv, policy=T.GemmWarpPolicy.FullRow, wg_wait=-1)

                T.copy(Delta[bz, bx, k * block_N:(k + 1) * block_N], delta)

                for i, j in T.Parallel(block_M, block_N):
                    dsT_cast[i, j] = qkT[i, j] * (dsT[i, j] - delta[j]) * sm_scale
                T.gemm(dsT_cast, q, dk, policy=T.GemmWarpPolicy.FullRow, wg_wait=1)

                T.copy(dsT_cast, dsT_shared)
                T.clear(dq)
                T.gemm(dsT_shared, K_shared, dq, transpose_A=True, wg_wait=1)
228
                T.wait_wgmma(0)
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
                for i, j in T.Parallel(block_N, dim):
                    if k * block_N + i < seq_len:
                        T.atomic_add(dQ[bz, k * block_N + i, bx, j], dq[i, j])
            T.copy(dv, dv_shared)
            T.copy(dk, dk_shared)
            T.copy(dv_shared, dV[bz, by * block_M:(by + 1) * block_M, bx, :])
            T.copy(dk_shared, dK[bz, by * block_M:(by + 1) * block_M, bx, :])

    return flash_bwd


class _attention(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, causal):
        BATCH, N_CTX, H, D_HEAD = q.shape
        block_M = 64
        block_N = 64 if D_HEAD <= 128 else 32
247
        mod = flashattn_fwd(BATCH, H, N_CTX, D_HEAD, causal, block_M, block_N)
248
249
250
251
252
253
254
255
        o, lse = mod(q, k, v)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
256
        BATCH, N_CTX, H, D_HEAD = q.shape
257
258
259
260
261
262
263

        def maybe_contiguous(x):
            if x.stride(-1) != 1:
                return x.contiguous()
            return x

        do, q, k, v, o = [maybe_contiguous(x) for x in (do, q, k, v, o)]
264
265
        block_M = 128
        block_N = 128 if D_HEAD <= 64 else 32
266
267
        mod_prep = flashattn_bwd_preprocess(BATCH, H, N_CTX, D_HEAD)
        mod_post = flashattn_bwd_postprocess(BATCH, H, N_CTX, D_HEAD)
268
        delta = mod_prep(o, do)
269
270
271
272
273
274
        mod = flashattn_bwd(BATCH, H, N_CTX, D_HEAD, ctx.causal, block_M, block_N)
        shape = [BATCH, N_CTX, H, D_HEAD]
        dq = torch.zeros(shape, dtype=torch.float32, device=q.device)
        dk = torch.empty(shape, dtype=torch.float16, device=q.device)
        dv = torch.empty(shape, dtype=torch.float16, device=q.device)
        mod(q, k, v, do, lse, delta, dq, dk, dv)
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
        dq = mod_post(dq)
        return dq, dk, dv, None


attention = _attention.apply


def ref_program(Q, K, V, is_causal):
    dim = Q.size(-1)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
    if is_causal:
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


296
297
298
299
300
301
302
def main(
    BATCH: int = 8,
    H: int = 32,
    N_CTX: int = 1024,
    D_HEAD: int = 64,
    causal: bool = False,
):
303
304
    flops_per_matmul = 2.0 * BATCH * H * N_CTX * N_CTX * D_HEAD
    total_flops = 5 * flops_per_matmul
305
    if causal:
306
307
308
309
310
311
312
        total_flops *= 0.5
    Q = (
        torch.empty(BATCH, N_CTX, H, D_HEAD, dtype=torch.half,
                    device="cuda").normal_().requires_grad_())
    K = torch.empty_like(Q).normal_().requires_grad_()
    V = torch.empty_like(Q).normal_().requires_grad_()
    dO = torch.randn_like(Q)
313
    O = attention(Q, K, V, causal)
314
315
316
317
318
    O.backward(dO, retain_graph=True)
    dQ, Q.grad = Q.grad.clone(), None
    dK, K.grad = K.grad.clone(), None
    dV, V.grad = V.grad.clone(), None

319
    O_ref = ref_program(Q, K, V, causal)
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
    O_ref.backward(dO, retain_graph=True)
    dQ_ref, Q.grad = Q.grad.clone(), None
    dK_ref, K.grad = K.grad.clone(), None
    dV_ref, V.grad = V.grad.clone(), None

    assert torch.allclose(O, O_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dV, dV_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dK, dK_ref, rtol=1e-2, atol=1e-2)
    assert torch.allclose(dQ, dQ_ref, rtol=1e-2, atol=1e-2)

    def run():
        O_ref.backward(dO, retain_graph=True)

    def run1():
        O.backward(dO, retain_graph=True)

    from tilelang.profiler import do_bench

    latency = do_bench(run, warmup=500)
    print("torch: {:.2f} ms".format(latency))
    print("torch: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    latency = do_bench(run1, warmup=500)
    print("tilelang: {:.2f} ms".format(latency))
    print("tilelang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
344
345
346
347
348
349
350
351
352
353
354


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='Batch size')
    parser.add_argument('--h', type=int, default=32, help='Number of heads')
    parser.add_argument('--n_ctx', type=int, default=1024, help='Context size')
    parser.add_argument('--d_head', type=int, default=64, help='Head dimension')
    parser.add_argument('--causal', type=bool, default=False, help='Causal flag')
    args = parser.parse_args()
    main(args.batch, args.h, args.n_ctx, args.d_head, args.causal)