common.h 11.8 KB
Newer Older
1
2
#pragma once

3
#ifndef __CUDACC_RTC__
4
#include <cuda_runtime.h>
5
6
#endif

7
#include <cuda/atomic>
8
9
10
11
12
13
14
15
#include <cutlass/fast_math.h>
#include <cutlass/numeric_types.h>
#include <math_constants.h>

using cutlass::bfloat16_t;
using cutlass::half_t;
using cutlass::tfloat32_t;

16
17
using int4_t = int4;

18
19
20
21
22
23
24
25
26
27
28
#define hexp cutlass::fast_exp
#define hlog cutlass::fast_log
#define hsqrt cutlass::fast_sqrt
#define htanh cutlass::fast_tanh
#define hpow powf

#define uint unsigned int
#define uchar unsigned char
#define ushort unsigned short

#define TL_DEVICE __forceinline__ __device__
29
#define TL_DEVICE_NOINLINE __noinline__ __device__
30
31
#define TL_PATCH

32
33
34
35
36
37
38
39
40
41
#define TILELANG_CHECK(stmt)                                                   \
  do {                                                                         \
    cudaError_t __err = (stmt);                                                \
    if (__err != cudaSuccess) {                                                \
      snprintf(error_buf, ERROR_BUF_SIZE, "%s:%d: %s - %s", __FILE__,          \
               __LINE__, cudaGetErrorName(__err), cudaGetErrorString(__err));  \
      return -1;                                                               \
    }                                                                          \
  } while (0)

42
43
44
45
#define TILELANG_CHECK_LAST_ERROR(kernel_name)                                 \
  do {                                                                         \
    cudaError_t __err = cudaGetLastError();                                    \
    if (__err != cudaSuccess) {                                                \
46
      snprintf(error_buf, ERROR_BUF_SIZE, kernel_name ": %s - %s",             \
47
48
49
50
51
               cudaGetErrorName(__err), cudaGetErrorString(__err));            \
      return -1;                                                               \
    }                                                                          \
  } while (0)

Gabriel Wu's avatar
Gabriel Wu committed
52
// abs function for bfloat_t and half_t since there is no implicit conversion
53
54
55
56
// method
TL_PATCH TL_DEVICE half_t __habs(const half_t x) {
  return half_t(__habs(x.to_half()));
}
57

58
59
60
61
62
// hrsqrt function for half_t
TL_PATCH TL_DEVICE half_t hrsqrt(const half_t x) {
  return half_t(hrsqrt(x.to_half()));
}

63
64
// Pack two half values.
TL_DEVICE unsigned __pack_half2(const half x, const half y) {
65
66
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
67
68
69
70
71
  return (v1 << 16) | v0;
}

// Pack two half_t values.
TL_DEVICE unsigned __pack_half2(const half_t x, const half_t y) {
72
73
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
74
75
76
77
78
  return (v1 << 16) | v0;
}

// Pack two bfloat16_t values.
TL_DEVICE unsigned __pack_half2(const bfloat16_t x, const bfloat16_t y) {
79
80
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
81
82
83
  return (v1 << 16) | v0;
}

84
85
86
87
88
89
90
// Pack two bfloat16_t values.
TL_DEVICE unsigned __pack_nv_bfloat162(const bfloat16_t x, const bfloat16_t y) {
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
  return (v1 << 16) | v0;
}

91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
// Pack four char values
TL_DEVICE int make_int(signed char x0, signed char x1, signed char x2,
                       signed char x3) {
  return (x3 << 24) | (x2 << 16) | (x1 << 8) | x0;
}

// Pack sixteen char values.
TL_DEVICE int4_t make_int4(signed char x0, signed char x1, signed char x2,
                           signed char x3, signed char y0, signed char y1,
                           signed char y2, signed char y3, signed char z0,
                           signed char z1, signed char z2, signed char z3,
                           signed char w0, signed char w1, signed char w2,
                           signed char w3) {
  int4_t result;
  result.x = make_int(x0, x1, x2, x3);
  result.y = make_int(y0, y1, y2, y3);
  result.z = make_int(z0, z1, z2, z3);
  result.w = make_int(w0, w1, w2, w3);
  return result;
}

112
// Helper to cast SMEM pointer to unsigned
113
TL_DEVICE uint32_t smem_ptr_to_uint(void const *const ptr) {
114
115
116
  return static_cast<uint32_t>(__cvta_generic_to_shared(ptr));
}

117
118
119
120
121
122
123
124
125
126
127
128
129
/**
 * Convert a shared-memory pointer to a 32-bit unsigned integer address.
 *
 * Casts the given pointer (expected to reference shared memory) into a 32-bit
 * unsigned integer using the device address-space conversion required for
 * shared-memory pointers.
 *
 * @param smem_ptr Pointer into shared memory.
 * @return 32-bit unsigned integer representation of the shared-memory address.
 *
 * @note The pointer must refer to shared memory; behavior is undefined for
 *       pointers in other address spaces.
 */
130
131
132
133
134
135
136
137
138
TL_DEVICE unsigned int cast_smem_ptr_to_int(const void *const smem_ptr) {
  unsigned int smem_int;
  asm volatile("{ .reg .u64 smem_int; cvta.to.shared.u64 smem_int, %1; "
               "cvt.u32.u64 %0, smem_int; }"
               : "=r"(smem_int)
               : "l"(smem_ptr));
  return smem_int;
}

139
140
141
template <typename T> struct normalize_atomic_type {
  using type = T;
};
142

143
144
145
146
147
148
149
150
151
152
template <> /**
             * Map the public half_t alias to the native `half` type for atomic
             * operations.
             *
             * Used by the atomic utilities to normalize externally exposed
             * typedefs (e.g., Cutlass half_t) to the compiler's native `half`
             * representation so correct atomic intrinsics or `cuda::atomic_ref`
             * specializations can be selected.
             */
struct normalize_atomic_type<half_t> {
153
154
  using type = half;
};
155

156
157
158
159
160
#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
template <> struct normalize_atomic_type<bfloat16_t> {
  using type = __nv_bfloat16;
};
#endif
161

162
163
template <typename T1, typename T2> TL_DEVICE T1 cuda_cast(T2 val) {
  return T1(val);
164
165
}

166
167
template <> TL_DEVICE half cuda_cast<half, float>(float val) {
  return __float2half(val);
168
169
}

170
#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
171
172
template <> TL_DEVICE __nv_bfloat16 cuda_cast<__nv_bfloat16, float>(float val) {
  return __float2bfloat16(val);
173
}
174
#endif
175

176
177
178
179
180
181
182
183
184
185
186
template <typename T1, typename T2>
TL_DEVICE void AtomicMax(T1 *address, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    atomicMax(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_max(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
  }
187
188
}

189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
template <typename T1, typename T2>
TL_DEVICE void AtomicMin(T1 *address, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    atomicMin(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_min(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
  }
}

template <typename T1, typename T2>
TL_DEVICE void AtomicAdd(T1 *address, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    atomicAdd(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_add(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
  }
}
214

215
216
217
218
219
220
// AtomicAdd Functions for FP16x2
TL_DEVICE void AtomicAddx2(half_t *address, half_t *val) {
  atomicAdd(reinterpret_cast<half2 *>(address),
            static_cast<half2>(*reinterpret_cast<half2 *>(val)));
}

221
#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
222

223
224
225
226
227
228
// AtomicAdd Functions for BFLOAT16x2
TL_DEVICE void AtomicAddx2(bfloat16_t *address, bfloat16_t *val) {
  atomicAdd(
      reinterpret_cast<__nv_bfloat162 *>(address),
      static_cast<__nv_bfloat162>(*reinterpret_cast<__nv_bfloat162 *>(val)));
}
229
#endif
230

231
232
233
234
235
236
237
238
239
240
241
242
243
#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 900))
// AtomicAdd Functions for FLOAT16x2
TL_DEVICE void AtomicAddx2(float *address, float *val) {
  atomicAdd(reinterpret_cast<float2 *>(address),
            static_cast<float2>(*reinterpret_cast<float2 *>(val)));
}
// AtomicAdd Functions for FLOAT16x4
TL_DEVICE void AtomicAddx4(float *address, float *val) {
  atomicAdd(reinterpret_cast<float4 *>(address),
            static_cast<float4>(*reinterpret_cast<float4 *>(val)));
}
#endif

244
245
246
247
248
249
template <typename T> TL_DEVICE T AtomicLoad(T *address, int memory_order) {
  cuda::atomic_ref<T, cuda::thread_scope_device> aref(*address);
  return aref.load(cuda::memory_order(memory_order));
}

template <typename T1, typename T2>
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
TL_DEVICE /**
           * Atomically stores a value into the given address using the
           * specified memory ordering.
           *
           * The value is converted to the normalized atomic storage type for T1
           * before being stored (for example, vectorized or reduced-width types
           * such as FP16/BF16 are mapped to their underlying hardware
           * representation). `memory_order` must be an `int` representation of
           * a `cuda::memory_order` value (e.g.,
           * `int(cuda::memory_order_relaxed)`).
           *
           * @param address Pointer to the destination atomic object.
           * @param value Value to store; will be cast to the atomic storage
           * type.
           * @param memory_order Memory ordering for the atomic store (as an
           * `int`-cast `cuda::memory_order`).
           */
    void
    AtomicStore(T1 *address, T2 value, int memory_order) {
269
270
271
272
273
  using NT1 = typename normalize_atomic_type<T1>::type;
  cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
  aref.store(cuda_cast<NT1>(value), cuda::memory_order(memory_order));
}

274
// DP4A
275
template <typename InDatatype, typename OutDatatype>
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
TL_DEVICE /**
           * Compute a 4×8-bit dot-product-accumulate using the CUDA DP4A
           * intrinsic.
           *
           * Reads 32-bit packed values from `a` and `b` (each containing four
           * signed 8-bit lanes), applies the __dp4a operation (dot product of
           * the four lane pairs added to an accumulator), and stores the 32-bit
           * integer result through `c`.
           *
           * @param a Pointer to a 32-bit packed input containing four signed
           * 8-bit elements.
           * @param b Pointer to a 32-bit packed input containing four signed
           * 8-bit elements.
           * @param c Pointer to a 32-bit accumulator; its current value is used
           * as the initial accumulator and overwritten with the resulting int32
           * sum.
           */
    void
    DP4A(InDatatype *a, InDatatype *b, OutDatatype *c) {
295
296
297
  const int a_int = *((int *)a);
  const int b_int = *((int *)b);
  const int c_int = *((int *)c);
298
299
  *c = __dp4a(a_int, b_int, c_int);
}
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320

namespace tl {
// Any
template <typename T> TL_DEVICE bool Any(T *a, int size) {
  for (int i = 0; i < size; i++) {
    if (a[i]) {
      return true;
    }
  }
  return false;
}

// All
template <typename T> TL_DEVICE bool All(T *a, int size) {
  for (int i = 0; i < size; i++) {
    if (!a[i]) {
      return false;
    }
  }
  return true;
}
321
322
323
324
325
326
327
328
329
330

// Pow of int
template <int y = 1, typename T> TL_DEVICE T pow_of_int(T x) {
  T result = x;
  for (int i = 1; i < y; i++) {
    result *= x;
  }
  return result;
}

331
332
333
334
335
336
// Thread partial barrier synchronization
// https://docs.nvidia.com/cuda/parallel-thread-execution/#memory-consistency-model
template <int barrier_id = 0, int thread_count = 0>
TL_DEVICE void __sync_thread_partial() {
  asm volatile("bar.sync %0, %1;" : : "r"(barrier_id), "r"(thread_count));
}
337
} // namespace tl
Wenhao Xie's avatar
Wenhao Xie committed
338
339
340
341
342

namespace cutlass {
TL_DEVICE
bfloat16_t fast_exp(bfloat16_t x) { return ::hexp(x); }
} // namespace cutlass