common.h 11.7 KB
Newer Older
1
2
#pragma once

3
#ifndef __CUDACC_RTC__
4
#include <cuda_runtime.h>
5
6
#endif

7
#include <cuda/atomic>
8
9
10
11
12
13
14
15
#include <cutlass/fast_math.h>
#include <cutlass/numeric_types.h>
#include <math_constants.h>

using cutlass::bfloat16_t;
using cutlass::half_t;
using cutlass::tfloat32_t;

16
17
using int4_t = int4;

18
19
20
21
22
23
24
25
26
27
28
#define hexp cutlass::fast_exp
#define hlog cutlass::fast_log
#define hsqrt cutlass::fast_sqrt
#define htanh cutlass::fast_tanh
#define hpow powf

#define uint unsigned int
#define uchar unsigned char
#define ushort unsigned short

#define TL_DEVICE __forceinline__ __device__
29
#define TL_DEVICE_NOINLINE __noinline__ __device__
30
31
#define TL_PATCH

32
33
34
35
36
37
38
39
40
41
#define TILELANG_CHECK(stmt)                                                   \
  do {                                                                         \
    cudaError_t __err = (stmt);                                                \
    if (__err != cudaSuccess) {                                                \
      snprintf(error_buf, ERROR_BUF_SIZE, "%s:%d: %s - %s", __FILE__,          \
               __LINE__, cudaGetErrorName(__err), cudaGetErrorString(__err));  \
      return -1;                                                               \
    }                                                                          \
  } while (0)

42
43
44
45
#define TILELANG_CHECK_LAST_ERROR(kernel_name)                                 \
  do {                                                                         \
    cudaError_t __err = cudaGetLastError();                                    \
    if (__err != cudaSuccess) {                                                \
46
      snprintf(error_buf, ERROR_BUF_SIZE, kernel_name ": %s - %s",             \
47
48
49
50
51
               cudaGetErrorName(__err), cudaGetErrorString(__err));            \
      return -1;                                                               \
    }                                                                          \
  } while (0)

Gabriel Wu's avatar
Gabriel Wu committed
52
// abs function for bfloat_t and half_t since there is no implicit conversion
53
54
55
56
// method
TL_PATCH TL_DEVICE half_t __habs(const half_t x) {
  return half_t(__habs(x.to_half()));
}
57
58
59

// Pack two half values.
TL_DEVICE unsigned __pack_half2(const half x, const half y) {
60
61
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
62
63
64
65
66
  return (v1 << 16) | v0;
}

// Pack two half_t values.
TL_DEVICE unsigned __pack_half2(const half_t x, const half_t y) {
67
68
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
69
70
71
72
73
  return (v1 << 16) | v0;
}

// Pack two bfloat16_t values.
TL_DEVICE unsigned __pack_half2(const bfloat16_t x, const bfloat16_t y) {
74
75
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
76
77
78
  return (v1 << 16) | v0;
}

79
80
81
82
83
84
85
// Pack two bfloat16_t values.
TL_DEVICE unsigned __pack_nv_bfloat162(const bfloat16_t x, const bfloat16_t y) {
  unsigned v0 = *((unsigned short *)&x);
  unsigned v1 = *((unsigned short *)&y);
  return (v1 << 16) | v0;
}

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
// Pack four char values
TL_DEVICE int make_int(signed char x0, signed char x1, signed char x2,
                       signed char x3) {
  return (x3 << 24) | (x2 << 16) | (x1 << 8) | x0;
}

// Pack sixteen char values.
TL_DEVICE int4_t make_int4(signed char x0, signed char x1, signed char x2,
                           signed char x3, signed char y0, signed char y1,
                           signed char y2, signed char y3, signed char z0,
                           signed char z1, signed char z2, signed char z3,
                           signed char w0, signed char w1, signed char w2,
                           signed char w3) {
  int4_t result;
  result.x = make_int(x0, x1, x2, x3);
  result.y = make_int(y0, y1, y2, y3);
  result.z = make_int(z0, z1, z2, z3);
  result.w = make_int(w0, w1, w2, w3);
  return result;
}

107
// Helper to cast SMEM pointer to unsigned
108
TL_DEVICE uint32_t smem_ptr_to_uint(void const *const ptr) {
109
110
111
  return static_cast<uint32_t>(__cvta_generic_to_shared(ptr));
}

112
113
114
115
116
117
118
119
120
121
122
123
124
/**
 * Convert a shared-memory pointer to a 32-bit unsigned integer address.
 *
 * Casts the given pointer (expected to reference shared memory) into a 32-bit
 * unsigned integer using the device address-space conversion required for
 * shared-memory pointers.
 *
 * @param smem_ptr Pointer into shared memory.
 * @return 32-bit unsigned integer representation of the shared-memory address.
 *
 * @note The pointer must refer to shared memory; behavior is undefined for
 *       pointers in other address spaces.
 */
125
126
127
128
129
130
131
132
133
TL_DEVICE unsigned int cast_smem_ptr_to_int(const void *const smem_ptr) {
  unsigned int smem_int;
  asm volatile("{ .reg .u64 smem_int; cvta.to.shared.u64 smem_int, %1; "
               "cvt.u32.u64 %0, smem_int; }"
               : "=r"(smem_int)
               : "l"(smem_ptr));
  return smem_int;
}

134
135
136
template <typename T> struct normalize_atomic_type {
  using type = T;
};
137

138
139
140
141
142
143
144
145
146
147
template <> /**
             * Map the public half_t alias to the native `half` type for atomic
             * operations.
             *
             * Used by the atomic utilities to normalize externally exposed
             * typedefs (e.g., Cutlass half_t) to the compiler's native `half`
             * representation so correct atomic intrinsics or `cuda::atomic_ref`
             * specializations can be selected.
             */
struct normalize_atomic_type<half_t> {
148
149
  using type = half;
};
150

151
152
153
154
155
#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
template <> struct normalize_atomic_type<bfloat16_t> {
  using type = __nv_bfloat16;
};
#endif
156

157
158
template <typename T1, typename T2> TL_DEVICE T1 cuda_cast(T2 val) {
  return T1(val);
159
160
}

161
162
template <> TL_DEVICE half cuda_cast<half, float>(float val) {
  return __float2half(val);
163
164
}

165
#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
166
167
template <> TL_DEVICE __nv_bfloat16 cuda_cast<__nv_bfloat16, float>(float val) {
  return __float2bfloat16(val);
168
}
169
#endif
170

171
172
173
174
175
176
177
178
179
180
181
template <typename T1, typename T2>
TL_DEVICE void AtomicMax(T1 *address, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    atomicMax(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_max(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
  }
182
183
}

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
template <typename T1, typename T2>
TL_DEVICE void AtomicMin(T1 *address, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    atomicMin(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_min(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
  }
}

template <typename T1, typename T2>
TL_DEVICE void AtomicAdd(T1 *address, T2 val,
                         int memory_order = int(cuda::memory_order_relaxed)) {
  using NT1 = typename normalize_atomic_type<T1>::type;
  if constexpr (std::is_same_v<NT1, half> ||
                std::is_same_v<NT1, __nv_bfloat16>) {
    atomicAdd(reinterpret_cast<NT1 *>(address), static_cast<NT1>(val));
  } else {
    cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
    aref.fetch_add(cuda_cast<NT1>(val), cuda::memory_order(memory_order));
  }
}
209

210
211
212
213
214
215
// AtomicAdd Functions for FP16x2
TL_DEVICE void AtomicAddx2(half_t *address, half_t *val) {
  atomicAdd(reinterpret_cast<half2 *>(address),
            static_cast<half2>(*reinterpret_cast<half2 *>(val)));
}

216
#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ > 750))
217

218
219
220
221
222
223
// AtomicAdd Functions for BFLOAT16x2
TL_DEVICE void AtomicAddx2(bfloat16_t *address, bfloat16_t *val) {
  atomicAdd(
      reinterpret_cast<__nv_bfloat162 *>(address),
      static_cast<__nv_bfloat162>(*reinterpret_cast<__nv_bfloat162 *>(val)));
}
224
#endif
225

226
227
228
229
230
231
232
233
234
235
236
237
238
#if (defined(__CUDA_ARCH_LIST__) && (__CUDA_ARCH_LIST__ >= 900))
// AtomicAdd Functions for FLOAT16x2
TL_DEVICE void AtomicAddx2(float *address, float *val) {
  atomicAdd(reinterpret_cast<float2 *>(address),
            static_cast<float2>(*reinterpret_cast<float2 *>(val)));
}
// AtomicAdd Functions for FLOAT16x4
TL_DEVICE void AtomicAddx4(float *address, float *val) {
  atomicAdd(reinterpret_cast<float4 *>(address),
            static_cast<float4>(*reinterpret_cast<float4 *>(val)));
}
#endif

239
240
241
242
243
244
template <typename T> TL_DEVICE T AtomicLoad(T *address, int memory_order) {
  cuda::atomic_ref<T, cuda::thread_scope_device> aref(*address);
  return aref.load(cuda::memory_order(memory_order));
}

template <typename T1, typename T2>
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
TL_DEVICE /**
           * Atomically stores a value into the given address using the
           * specified memory ordering.
           *
           * The value is converted to the normalized atomic storage type for T1
           * before being stored (for example, vectorized or reduced-width types
           * such as FP16/BF16 are mapped to their underlying hardware
           * representation). `memory_order` must be an `int` representation of
           * a `cuda::memory_order` value (e.g.,
           * `int(cuda::memory_order_relaxed)`).
           *
           * @param address Pointer to the destination atomic object.
           * @param value Value to store; will be cast to the atomic storage
           * type.
           * @param memory_order Memory ordering for the atomic store (as an
           * `int`-cast `cuda::memory_order`).
           */
    void
    AtomicStore(T1 *address, T2 value, int memory_order) {
264
265
266
267
268
  using NT1 = typename normalize_atomic_type<T1>::type;
  cuda::atomic_ref<NT1, cuda::thread_scope_device> aref(*address);
  aref.store(cuda_cast<NT1>(value), cuda::memory_order(memory_order));
}

269
// DP4A
270
template <typename InDatatype, typename OutDatatype>
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
TL_DEVICE /**
           * Compute a 4×8-bit dot-product-accumulate using the CUDA DP4A
           * intrinsic.
           *
           * Reads 32-bit packed values from `a` and `b` (each containing four
           * signed 8-bit lanes), applies the __dp4a operation (dot product of
           * the four lane pairs added to an accumulator), and stores the 32-bit
           * integer result through `c`.
           *
           * @param a Pointer to a 32-bit packed input containing four signed
           * 8-bit elements.
           * @param b Pointer to a 32-bit packed input containing four signed
           * 8-bit elements.
           * @param c Pointer to a 32-bit accumulator; its current value is used
           * as the initial accumulator and overwritten with the resulting int32
           * sum.
           */
    void
    DP4A(InDatatype *a, InDatatype *b, OutDatatype *c) {
290
291
292
  const int a_int = *((int *)a);
  const int b_int = *((int *)b);
  const int c_int = *((int *)c);
293
294
  *c = __dp4a(a_int, b_int, c_int);
}
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315

namespace tl {
// Any
template <typename T> TL_DEVICE bool Any(T *a, int size) {
  for (int i = 0; i < size; i++) {
    if (a[i]) {
      return true;
    }
  }
  return false;
}

// All
template <typename T> TL_DEVICE bool All(T *a, int size) {
  for (int i = 0; i < size; i++) {
    if (!a[i]) {
      return false;
    }
  }
  return true;
}
316
317
318
319
320
321
322
323
324
325

// Pow of int
template <int y = 1, typename T> TL_DEVICE T pow_of_int(T x) {
  T result = x;
  for (int i = 1; i < y; i++) {
    result *= x;
  }
  return result;
}

326
327
328
329
330
331
// Thread partial barrier synchronization
// https://docs.nvidia.com/cuda/parallel-thread-execution/#memory-consistency-model
template <int barrier_id = 0, int thread_count = 0>
TL_DEVICE void __sync_thread_partial() {
  asm volatile("bar.sync %0, %1;" : : "r"(barrier_id), "r"(thread_count));
}
332
} // namespace tl
Wenhao Xie's avatar
Wenhao Xie committed
333
334
335
336
337

namespace cutlass {
TL_DEVICE
bfloat16_t fast_exp(bfloat16_t x) { return ::hexp(x); }
} // namespace cutlass