test_tilelang_tilelibrary_gemm_sp.py 11.2 KB
Newer Older
1
2
3
4
import torch
import tilelang
import tilelang.testing

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
from tilelang.utils.sparse import compress, randn_semi_sparse, randint_semi_sparse
from tilelang.layout import make_cutlass_metadata_layout
from tilelang.utils.tensor import torch_assert_close, map_torch_type
from tilelang.intrinsics.mma_sp_macro_generator import SparseTensorCoreIntrinEmitter

torch.backends.cuda.matmul.allow_tf32 = False
# torch.manual_seed(42)  # only enable when debugging


def generate_dense_input(M, N, K, trans_A, trans_B, in_dtype):
    is_8bit = "8" in in_dtype
    is_unsigned = "uint" in in_dtype
    is_int = "int" in in_dtype
    if is_int:
        if is_8bit:
            low, high = (0, 4) if is_unsigned else (-2, 2)
        else:
            low, high = (0, 128) if is_unsigned else (-64, 64)
23
24
        A = randint_semi_sparse(M, K, low=low, high=high, dtype=map_torch_type(in_dtype), device="cuda", transposed=trans_A)
        B = torch.randint(size=(N, K) if trans_B else (K, N), low=low, high=high, dtype=map_torch_type(in_dtype), device="cuda")
25
    else:
26
27
        A = randn_semi_sparse(M, K, dtype=torch.float32, device="cuda", transposed=trans_A).to(map_torch_type(in_dtype))
        B = torch.randn((N, K) if trans_B else (K, N), device="cuda", dtype=torch.float32).to(map_torch_type(in_dtype))
28
    return A, B
29
30


31
def matmul_sp_sm90(
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    trans_A,
    trans_B,
):
    E_factor = 4 if in_dtype == "float32" else 8
    A_sparse_shape = (M, K // 2) if not trans_A else (K // 2, M)
    B_shape = (K, N) if not trans_B else (N, K)
    A_shared_shape = (block_M, block_K // 2) if not trans_A else (block_K // 2, block_M)
    B_shared_shape = (block_K, block_N) if not trans_B else (block_N, block_K)

    import tilelang.language as T

    @T.prim_func
    def main(
56
57
58
59
        A_sparse: T.Tensor(A_sparse_shape, in_dtype),
        E: T.Tensor((M, K // E_factor), "uint8"),
        B: T.Tensor(B_shape, in_dtype),
        C: T.Tensor((M, N), out_dtype),
60
61
62
63
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
64
            E_shared = T.alloc_shared((block_M, block_K // E_factor), "uint8")
65
            C_frag = T.alloc_fragment((block_M, block_N), accum_dtype)
66
67
68
69
70
71
            T.annotate_layout(
                {
                    E: make_cutlass_metadata_layout(E, mma_dtype=in_dtype, arch="9.0", block_k=block_K),
                    E_shared: make_cutlass_metadata_layout(E_shared, mma_dtype=in_dtype, arch="9.0", block_k=block_K),
                }
            )
72
            T.disable_warp_group_reg_alloc()
73
            T.clear(C_frag)
74
75
76
77
78
79
80
81
82
83
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(E[by * block_M, k * block_K // E_factor], E_shared)
                if trans_A:
                    T.copy(A_sparse[k * block_K // 2, by * block_M], A_shared)
                else:
                    T.copy(A_sparse[by * block_M, k * block_K // 2], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
84
85
                T.gemm_sp(A_shared, E_shared, B_shared, C_frag, trans_A, trans_B)
            T.copy(C_frag, C[by * block_M, bx * block_N])
86
87
88
89

    return main


90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
def matmul_sp_sm80(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    trans_A,
    trans_B,
):
    is_8_bit = "8" in in_dtype
106
    metadata_dtype = "int32" if is_8_bit else "int16"
107
    E_factor = SparseTensorCoreIntrinEmitter.E_FACTOR_MAP[in_dtype][metadata_dtype]
108
109
110
111
112
113
114
115
116
    A_sparse_shape = (M, K // 2) if not trans_A else (K // 2, M)
    B_shape = (K, N) if not trans_B else (N, K)
    A_shared_shape = (block_M, block_K // 2) if not trans_A else (block_K // 2, block_M)
    B_shared_shape = (block_K, block_N) if not trans_B else (block_N, block_K)

    import tilelang.language as T

    @T.prim_func
    def main(
117
118
119
120
        A_sparse: T.Tensor(A_sparse_shape, in_dtype),
        E: T.Tensor((M, K // E_factor), metadata_dtype),
        B: T.Tensor(B_shape, in_dtype),
        C: T.Tensor((M, N), out_dtype),
121
122
123
124
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
125
            E_shared = T.alloc_shared((block_M, block_K // E_factor), metadata_dtype)
126
            C_frag = T.alloc_fragment((block_M, block_N), accum_dtype)
127
128
129
130
131
132
            T.annotate_layout(
                {
                    E: make_cutlass_metadata_layout(E, mma_dtype=in_dtype, arch="8.0"),
                    E_shared: make_cutlass_metadata_layout(E_shared, mma_dtype=in_dtype, arch="8.0"),
                }
            )
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
            T.clear(C_frag)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(E[by * block_M, k * block_K // E_factor], E_shared)
                if trans_A:
                    T.copy(A_sparse[k * block_K // 2, by * block_M], A_shared)
                else:
                    T.copy(A_sparse[by * block_M, k * block_K // 2], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm_sp(A_shared, E_shared, B_shared, C_frag, trans_A, trans_B)
            T.copy(C_frag, C[by * block_M, bx * block_N])

    return main


150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
def normalize(tensor, max_range=100.0):
    assert max_range <= 448.0
    max_v = tensor.abs().max().clamp(1e-4)
    scaler = max_range / max_v
    return tensor * scaler


def calc_diff(x, y):
    x, y = x.double(), y.double()
    denominator = (x * x + y * y).sum()
    sim = 2 * (x * y).sum() / denominator
    return 1 - sim


def run_gemm_sp(
165
    kernel,
166
167
168
169
170
171
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    block_K,
172
173
    trans_A,
    trans_B,
174
175
):
    kernel = tilelang.compile(
176
        kernel,
177
178
        out_idx=[-1],
    )
179
180
181
182
183
184
185
186
    A, B = generate_dense_input(
        M=M,
        N=N,
        K=K,
        trans_A=trans_A,
        trans_B=trans_B,
        in_dtype=in_dtype,
    )
187
    A_sparse, E = compress(A, transposed=trans_A, block_k=block_K)
188
189
190
191
192
193
194
195
196
197
198

    C_sp = kernel(A_sparse, E, B)

    def _matmul(A, B):
        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        if "float8" in in_dtype or "int8" in in_dtype:
            A = A.to(torch.float32)
            B = B.to(torch.float32)
199
        return torch.matmul(A, B)
200
201

    C = _matmul(A, B)
202

203
    if "float8" in in_dtype:
204
205
206
        diff = calc_diff(C_sp, C)
        assert diff < 1e-3, f"{diff=}"
    else:
207
208
209
210
211
212
213
214
        torch_assert_close(
            C_sp.to(torch.float32),
            C.to(torch.float32),
            rtol=1e-3,
            atol=1e-3,
            base_name="tilelang_sp",
            ref_name="ref_dense",
        )
215
216
217
    print("pass")


218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
def run_gemm_sp_sm90(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    block_M,
    block_N,
    block_K,
    num_stages,
    num_threads,
    trans_A=False,
    trans_B=False,
):
    kernel = matmul_sp_sm90(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        in_dtype,
        out_dtype,
        accum_dtype,
        num_stages,
        num_threads,
        trans_A,
        trans_B,
    )
    run_gemm_sp(
        kernel,
        M,
        N,
        K,
        in_dtype,
        out_dtype,
        block_K,
        trans_A,
        trans_B,
    )


def run_gemm_sp_sm80(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    block_M,
    block_N,
    block_K,
    num_stages,
    num_threads,
    trans_A=False,
    trans_B=False,
):
    kernel = matmul_sp_sm80(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        in_dtype,
        out_dtype,
        accum_dtype,
        num_stages,
        num_threads,
        trans_A,
        trans_B,
    )
    run_gemm_sp(
        kernel,
        M,
        N,
        K,
        in_dtype,
        out_dtype,
        block_K,
        trans_A,
        trans_B,
    )


304
305
@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version(9, 0)
306
307
308
def test_gemm_sp_sm90():
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 32, 2, 128)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 32, 0, 256)
309

310
311
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 2, 128)
312

313
314
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 128, 128, 128, 0, 128)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 128, 128, 128, 2, 128)
315

316
317
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 128, 256, 0, 128)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 128, 256, 2, 128)
318

319
320
321
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, False, True)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, True, False)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, True, True)
322

323
    run_gemm_sp_sm90(512, 1024, 768, "float8_e4m3", "float16", "float16", 64, 64, 64, 2, 128, False, True)
324
    run_gemm_sp_sm90(512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 2, 128, False, True)
325

326
327
328
329
330
331
332
333
334

@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version_ge(8, 0)
@tilelang.testing.requires_cuda_compute_version_le(8, 9)
def test_gemm_sp_sm80():
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 32, 32, 32, 0, 32)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 32)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128)

335
336
337
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 32, 32, 64, 0, 32, False, True)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 32, False, True)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, False, True)
338
339
340
341
342
343
344
345
346
347
348
349

    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 1, 128)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 2, 128)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 3, 128)

    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 32, 32, 64, 0, 32, False, True)
    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 0, 32, False, True)
    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 128, 128, 128, 0, 128, False, True)

    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 1, 128, False, True)
    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 2, 128, False, True)
    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 3, 128, False, True)
350
351
352
353


if __name__ == "__main__":
    tilelang.testing.main()