test_tilelang_tilelibrary_gemm_sp.py 11.6 KB
Newer Older
1
2
3
4
import torch
import tilelang
import tilelang.testing

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
from tilelang.utils.sparse import compress, randn_semi_sparse, randint_semi_sparse
from tilelang.layout import make_cutlass_metadata_layout
from tilelang.utils.tensor import torch_assert_close, map_torch_type
from tilelang.intrinsics.mma_sp_macro_generator import SparseTensorCoreIntrinEmitter

torch.backends.cuda.matmul.allow_tf32 = False
# torch.manual_seed(42)  # only enable when debugging


def generate_dense_input(M, N, K, trans_A, trans_B, in_dtype):
    is_8bit = "8" in in_dtype
    is_unsigned = "uint" in in_dtype
    is_int = "int" in in_dtype
    if is_int:
        if is_8bit:
            low, high = (0, 4) if is_unsigned else (-2, 2)
        else:
            low, high = (0, 128) if is_unsigned else (-64, 64)
        A = randint_semi_sparse(
            M,
            K,
            low=low,
            high=high,
            dtype=map_torch_type(in_dtype),
            device='cuda',
            transposed=trans_A)
        B = torch.randint(
            size=(N, K) if trans_B else (K, N),
            low=low,
            high=high,
            dtype=map_torch_type(in_dtype),
            device='cuda')
    else:
        A = randn_semi_sparse(
            M, K, dtype=torch.float32, device='cuda',
            transposed=trans_A).to(map_torch_type(in_dtype))
        B = torch.randn(
            (N, K) if trans_B else (K, N), device='cuda',
            dtype=torch.float32).to(map_torch_type(in_dtype))
    return A, B
45
46


47
def matmul_sp_sm90(
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    trans_A,
    trans_B,
):
    E_factor = 4 if in_dtype == "float32" else 8
    A_sparse_shape = (M, K // 2) if not trans_A else (K // 2, M)
    B_shape = (K, N) if not trans_B else (N, K)
    A_shared_shape = (block_M, block_K // 2) if not trans_A else (block_K // 2, block_M)
    B_shared_shape = (block_K, block_N) if not trans_B else (block_N, block_K)

    import tilelang.language as T

    @T.prim_func
    def main(
            A_sparse: T.Tensor(A_sparse_shape, in_dtype),
            E: T.Tensor((M, K // E_factor), 'uint8'),
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
            E_shared = T.alloc_shared((block_M, block_K // E_factor), 'uint8')
81
            C_frag = T.alloc_fragment((block_M, block_N), accum_dtype)
82
83
            T.annotate_layout({
                E:
84
85
                    make_cutlass_metadata_layout(
                        E, mma_dtype=in_dtype, arch="9.0", block_k=block_K),
86
                E_shared:
87
88
                    make_cutlass_metadata_layout(
                        E_shared, mma_dtype=in_dtype, arch="9.0", block_k=block_K),
89
            })
90
            T.disable_warp_group_reg_alloc()
91
            T.clear(C_frag)
92
93
94
95
96
97
98
99
100
101
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(E[by * block_M, k * block_K // E_factor], E_shared)
                if trans_A:
                    T.copy(A_sparse[k * block_K // 2, by * block_M], A_shared)
                else:
                    T.copy(A_sparse[by * block_M, k * block_K // 2], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
102
103
                T.gemm_sp(A_shared, E_shared, B_shared, C_frag, trans_A, trans_B)
            T.copy(C_frag, C[by * block_M, bx * block_N])
104
105
106
107

    return main


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
def matmul_sp_sm80(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    trans_A,
    trans_B,
):
    is_8_bit = "8" in in_dtype
124
125
    metadata_dtype = 'int32' if is_8_bit else 'int16'
    E_factor = SparseTensorCoreIntrinEmitter.E_FACTOR_MAP[in_dtype][metadata_dtype]
126
127
128
129
130
131
132
133
134
135
    A_sparse_shape = (M, K // 2) if not trans_A else (K // 2, M)
    B_shape = (K, N) if not trans_B else (N, K)
    A_shared_shape = (block_M, block_K // 2) if not trans_A else (block_K // 2, block_M)
    B_shared_shape = (block_K, block_N) if not trans_B else (block_N, block_K)

    import tilelang.language as T

    @T.prim_func
    def main(
            A_sparse: T.Tensor(A_sparse_shape, in_dtype),
136
            E: T.Tensor((M, K // E_factor), metadata_dtype),
137
138
139
140
141
142
            B: T.Tensor(B_shape, in_dtype),
            C: T.Tensor((M, N), out_dtype),
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
143
            E_shared = T.alloc_shared((block_M, block_K // E_factor), metadata_dtype)
144
145
            C_frag = T.alloc_fragment((block_M, block_N), accum_dtype)
            T.annotate_layout({
146
147
                E: make_cutlass_metadata_layout(E, mma_dtype=in_dtype, arch="8.0"),
                E_shared: make_cutlass_metadata_layout(E_shared, mma_dtype=in_dtype, arch="8.0"),
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
            })
            T.clear(C_frag)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(E[by * block_M, k * block_K // E_factor], E_shared)
                if trans_A:
                    T.copy(A_sparse[k * block_K // 2, by * block_M], A_shared)
                else:
                    T.copy(A_sparse[by * block_M, k * block_K // 2], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm_sp(A_shared, E_shared, B_shared, C_frag, trans_A, trans_B)
            T.copy(C_frag, C[by * block_M, bx * block_N])

    return main


166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def normalize(tensor, max_range=100.0):
    assert max_range <= 448.0
    max_v = tensor.abs().max().clamp(1e-4)
    scaler = max_range / max_v
    return tensor * scaler


def calc_diff(x, y):
    x, y = x.double(), y.double()
    denominator = (x * x + y * y).sum()
    sim = 2 * (x * y).sum() / denominator
    return 1 - sim


def run_gemm_sp(
181
    kernel,
182
183
184
185
186
187
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    block_K,
188
189
    trans_A,
    trans_B,
190
191
):
    kernel = tilelang.compile(
192
        kernel,
193
194
        out_idx=[-1],
    )
195
196
197
198
199
200
201
202
    A, B = generate_dense_input(
        M=M,
        N=N,
        K=K,
        trans_A=trans_A,
        trans_B=trans_B,
        in_dtype=in_dtype,
    )
203
    A_sparse, E = compress(A, transposed=trans_A, block_k=block_K)
204
205
206
207
208
209
210
211
212
213
214

    C_sp = kernel(A_sparse, E, B)

    def _matmul(A, B):
        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        if "float8" in in_dtype or "int8" in in_dtype:
            A = A.to(torch.float32)
            B = B.to(torch.float32)
215
        return torch.matmul(A, B)
216
217

    C = _matmul(A, B)
218

219
220
221
222
    if 'float8' in in_dtype:
        diff = calc_diff(C_sp, C)
        assert diff < 1e-3, f"{diff=}"
    else:
223
224
225
226
227
228
229
230
        torch_assert_close(
            C_sp.to(torch.float32),
            C.to(torch.float32),
            rtol=1e-3,
            atol=1e-3,
            base_name="tilelang_sp",
            ref_name="ref_dense",
        )
231
232
233
    print("pass")


234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
def run_gemm_sp_sm90(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    block_M,
    block_N,
    block_K,
    num_stages,
    num_threads,
    trans_A=False,
    trans_B=False,
):
    kernel = matmul_sp_sm90(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        in_dtype,
        out_dtype,
        accum_dtype,
        num_stages,
        num_threads,
        trans_A,
        trans_B,
    )
    run_gemm_sp(
        kernel,
        M,
        N,
        K,
        in_dtype,
        out_dtype,
        block_K,
        trans_A,
        trans_B,
    )


def run_gemm_sp_sm80(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    block_M,
    block_N,
    block_K,
    num_stages,
    num_threads,
    trans_A=False,
    trans_B=False,
):
    kernel = matmul_sp_sm80(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        in_dtype,
        out_dtype,
        accum_dtype,
        num_stages,
        num_threads,
        trans_A,
        trans_B,
    )
    run_gemm_sp(
        kernel,
        M,
        N,
        K,
        in_dtype,
        out_dtype,
        block_K,
        trans_A,
        trans_B,
    )


320
321
@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version(9, 0)
322
323
324
def test_gemm_sp_sm90():
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 32, 2, 128)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 32, 0, 256)
325

326
327
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 2, 128)
328

329
330
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 128, 128, 128, 0, 128)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 128, 128, 128, 2, 128)
331

332
333
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 128, 256, 0, 128)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 128, 256, 2, 128)
334

335
336
337
338
339
340
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, False,
                     True)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, True,
                     False)
    run_gemm_sp_sm90(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, True,
                     True)
341

342
343
344
    run_gemm_sp_sm90(512, 1024, 768, "float8_e4m3", "float16", "float16", 64, 64, 64, 2, 128, False,
                     True)
    run_gemm_sp_sm90(512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 2, 128, False, True)
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372

@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version_ge(8, 0)
@tilelang.testing.requires_cuda_compute_version_le(8, 9)
def test_gemm_sp_sm80():
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 32, 32, 32, 0, 32)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 32)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128)

    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 32, 32, 64, 0, 32, False,
                     True)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 32, False,
                     True)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, False,
                     True)

    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 1, 128)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 2, 128)
    run_gemm_sp_sm80(512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 3, 128)

    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 32, 32, 64, 0, 32, False, True)
    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 0, 32, False, True)
    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 128, 128, 128, 0, 128, False, True)

    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 1, 128, False, True)
    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 2, 128, False, True)
    run_gemm_sp_sm80(512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 3, 128, False, True)
373
374
375
376


if __name__ == "__main__":
    tilelang.testing.main()