example_mha_fwd_bshd.py 8.67 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import itertools
import argparse
from functools import partial


def get_configs():
12
13
14
15
16
    iter_params = dict(block_M=[64], block_N=[64], num_stages=[1], threads=[128])
    return [dict(zip(iter_params, values)) for values in itertools.product(*iter_params.values())]


@autotune(configs=get_configs(), warmup=10, rep=10)
17
@tilelang.jit(
18
19
    out_idx=[3],
    pass_configs={
20
        tilelang.PassConfigKey.TL_ENABLE_FAST_MATH: True,
21
22
23
24
    },
)
def flashattn(batch, heads, seq_len, dim, is_causal, block_M=64, block_N=64, num_stages=1, threads=128):
    scale = (1.0 / dim) ** 0.5 * 1.44269504  # log2(e)
25
26
27
28
    shape = [batch, seq_len, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

29
30
31
32
33
34
35
36
37
38
39
    @T.macro
    def MMA0(
        K: T.Tensor(shape, dtype),
        Q_shared: T.SharedBuffer([block_M, dim], dtype),
        K_shared: T.SharedBuffer([block_N, dim], dtype),
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
        k: T.int32,
        bx: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
40
        T.copy(K[bz, k * block_N : (k + 1) * block_N, by, :], K_shared)
41
42
        if is_causal:
            for i, j in T.Parallel(block_M, block_N):
43
                acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0, -T.infinity(acc_s.dtype))
44
        else:
45
46
            # We shall fill -inf for OOB positions
            for i, j in T.Parallel(block_M, block_N):
47
                acc_s[i, j] = T.if_then_else(k * block_N + j >= seq_len, -T.infinity(acc_s.dtype), 0)
48
49
50
51
52
        T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def MMA1(
        V: T.Tensor(shape, dtype),
53
        V_shared: T.SharedBuffer([block_N, dim], dtype),
54
55
56
57
58
59
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
        k: T.int32,
        by: T.int32,
        bz: T.int32,
    ):
60
        T.copy(V[bz, k * block_N : (k + 1) * block_N, by, :], V_shared)
61
62
63
64
        T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

    @T.macro
    def Softmax(
65
66
67
68
69
70
71
        acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
        acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
        scores_max: T.FragmentBuffer([block_M], accum_dtype),
        scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
        scores_scale: T.FragmentBuffer([block_M], accum_dtype),
        scores_sum: T.FragmentBuffer([block_M], accum_dtype),
        logsum: T.FragmentBuffer([block_M], accum_dtype),
72
73
74
75
    ):
        T.copy(scores_max, scores_max_prev)
        T.fill(scores_max, -T.infinity(accum_dtype))
        T.reduce_max(acc_s, scores_max, dim=1, clear=False)
76
77
        for i in T.Parallel(block_M):
            scores_max[i] = T.max(scores_max[i], scores_max_prev[i])
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        # To do causal softmax, we need to set the scores_max to 0 if it is -inf
        # This process is called Check_inf in FlashAttention3 code, and it only need to be done
        # in the first ceil_div(kBlockM, kBlockN) steps.
        # for i in T.Parallel(block_M):
        #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
        for i in T.Parallel(block_M):
            scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
        for i, j in T.Parallel(block_M, block_N):
            # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
            # max * log_2(e)) This allows the compiler to use the ffma
            # instruction instead of fadd and fmul separately.
            acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
        T.reduce_sum(acc_s, scores_sum, dim=1)
        for i in T.Parallel(block_M):
            logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
        T.copy(acc_s, acc_s_cast)

    @T.macro
    def Rescale(
97
98
        acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
        scores_scale: T.FragmentBuffer([block_M], accum_dtype),
99
100
101
102
103
104
    ):
        for i, j in T.Parallel(block_M, dim):
            acc_o[i, j] *= scores_scale[i]

    @T.prim_func
    def main(
105
106
107
108
        Q: T.Tensor(shape, dtype),
        K: T.Tensor(shape, dtype),
        V: T.Tensor(shape, dtype),
        Output: T.Tensor(shape, dtype),
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    ):
        with T.Kernel(T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
            Q_shared = T.alloc_shared([block_M, dim], dtype)
            K_shared = T.alloc_shared([block_N, dim], dtype)
            V_shared = T.alloc_shared([block_N, dim], dtype)
            O_shared = T.alloc_shared([block_M, dim], dtype)
            acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
            acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
            acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
            scores_max = T.alloc_fragment([block_M], accum_dtype)
            scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
            scores_scale = T.alloc_fragment([block_M], accum_dtype)
            scores_sum = T.alloc_fragment([block_M], accum_dtype)
            logsum = T.alloc_fragment([block_M], accum_dtype)

124
            T.copy(Q[bz, bx * block_M : (bx + 1) * block_M, by, :], Q_shared)
125
126
            T.fill(acc_o, 0)
            T.fill(logsum, 0)
127
128
            T.fill(scores_max, -T.infinity(accum_dtype))

129
            loop_range = (
130
131
                T.min(T.ceildiv(seq_len, block_N), T.ceildiv((bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N)
            )
132
133
134

            for k in T.Pipelined(loop_range, num_stages=num_stages):
                MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz)
135
                Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale, scores_sum, logsum)
136
137
138
139
140
                Rescale(acc_o, scores_scale)
                MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz)
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] /= logsum[i]
            T.copy(acc_o, O_shared)
141
            T.copy(O_shared, Output[bz, bx * block_M : (bx + 1) * block_M, by, :])
142

143
    return main
144
145


146
def ref_program(Q, K, V, is_causal):
147
    dim = Q.size(-1)
148
    scores = torch.einsum("bqhd,bkhd->bhqk", Q, K)
149
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
150
    if is_causal:
151
152
153
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
154
        scores = scores.masked_fill(mask == 0, float("-inf"))
155
    attention_weights = F.softmax(scores, dim=-1)
156
    output = torch.einsum("bhqk,bkhd->bqhd", attention_weights, V)
157
158
159
    return output


160
161
162
163
164
165
166
167
def main(
    batch: int = 8,
    heads: int = 32,
    seq_len: int = 4096,
    dim: int = 128,
    is_causal: bool = False,
    tune: bool = False,
):
168
169
    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul
170
    if is_causal:
171
172
        total_flops *= 0.5

173
174
    if not tune:
        kernel = flashattn(batch, heads, seq_len, dim, is_causal, block_M=128, block_N=128, num_stages=1, threads=128)
175
        ref_program_processed = partial(ref_program, is_causal=is_causal)
176
        profiler = kernel.get_profiler()
177
        profiler.assert_allclose(ref_program_processed, rtol=0.01, atol=0.01)
178
        print("All checks pass.")
179
        latency = profiler.do_bench(ref_program_processed, warmup=500)
180
181
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
182
        latency = profiler.do_bench(warmup=500)
183
184
185
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
186
        best_result = flashattn(batch, heads, seq_len, dim, is_causal)
187
188
189
        best_latency = best_result.latency
        best_config = best_result.config
        ref_latency = best_result.ref_latency
190
191
192
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")
193
194
195
196
197
        print(f"Ref latency: {ref_latency}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
198
199
200
201
202
203
    parser.add_argument("--batch", type=int, default=8, help="batch size")
    parser.add_argument("--heads", type=int, default=32, help="heads")
    parser.add_argument("--seq_len", type=int, default=4096, help="sequence length")
    parser.add_argument("--dim", type=int, default=128, help="dim")
    parser.add_argument("--is_causal", action="store_true", help="causal")
    parser.add_argument("--tune", action="store_true", help="tune configs")
204
205
    args = parser.parse_args()
    main(args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.tune)