example_mha_fwd_bshd.py 9.45 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
import torch
import torch.nn.functional as F
import tilelang
from tilelang.autotuner import *
import tilelang.language as T
import itertools
import argparse
from functools import partial


def get_configs():
12
13
14
15
    block_M = [64]
    block_N = [64]
    num_stages = [1]
    threads = [128]
16
17
18
19
20
21
22
23
24
25
26
    _configs = list(itertools.product(block_M, block_N, num_stages, threads))

    configs = [{
        'block_M': c[0],
        'block_N': c[1],
        'num_stages': c[2],
        'threads': c[3]
    } for c in _configs]
    return configs


27
def flashattn(batch, heads, seq_len, dim, is_causal, tune=False):
28
29
30
31
32
    scale = (1.0 / dim)**0.5 * 1.44269504  # log2(e)
    shape = [batch, seq_len, heads, dim]
    dtype = "float16"
    accum_dtype = "float"

33
    @tilelang.jit(out_idx=[3])
34
35
36
37
    def kernel_func(block_M, block_N, num_stages, threads):

        @T.macro
        def MMA0(
38
39
40
41
            K: T.Tensor(shape, dtype),
            Q_shared: T.SharedBuffer([block_M, dim], dtype),
            K_shared: T.SharedBuffer([block_N, dim], dtype),
            acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
42
43
44
45
46
47
            k: T.int32,
            bx: T.int32,
            by: T.int32,
            bz: T.int32,
        ):
            T.copy(K[bz, k * block_N:(k + 1) * block_N, by, :], K_shared)
48
            if is_causal:
49
50
51
52
53
54
55
56
57
                for i, j in T.Parallel(block_M, block_N):
                    acc_s[i, j] = T.if_then_else(bx * block_M + i >= k * block_N + j, 0,
                                                 -T.infinity(acc_s.dtype))
            else:
                T.clear(acc_s)
            T.gemm(Q_shared, K_shared, acc_s, transpose_B=True, policy=T.GemmWarpPolicy.FullRow)

        @T.macro
        def MMA1(
58
59
60
61
62
63
64
            V: T.Tensor(shape, dtype),
            V_shared: T.SharedBuffer([block_M, dim], dtype),
            acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
            acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
            k: T.int32,
            by: T.int32,
            bz: T.int32,
65
66
67
68
69
70
        ):
            T.copy(V[bz, k * block_N:(k + 1) * block_N, by, :], V_shared)
            T.gemm(acc_s_cast, V_shared, acc_o, policy=T.GemmWarpPolicy.FullRow)

        @T.macro
        def Softmax(
71
72
73
74
75
76
77
                acc_s: T.FragmentBuffer([block_M, block_N], accum_dtype),
                acc_s_cast: T.FragmentBuffer([block_M, block_N], dtype),
                scores_max: T.FragmentBuffer([block_M], accum_dtype),
                scores_max_prev: T.FragmentBuffer([block_M], accum_dtype),
                scores_scale: T.FragmentBuffer([block_M], accum_dtype),
                scores_sum: T.FragmentBuffer([block_M], accum_dtype),
                logsum: T.FragmentBuffer([block_M], accum_dtype),
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
        ):
            T.copy(scores_max, scores_max_prev)
            T.fill(scores_max, -T.infinity(accum_dtype))
            T.reduce_max(acc_s, scores_max, dim=1, clear=False)
            # To do causal softmax, we need to set the scores_max to 0 if it is -inf
            # This process is called Check_inf in FlashAttention3 code, and it only need to be done
            # in the first ceil_div(kBlockM, kBlockN) steps.
            # for i in T.Parallel(block_M):
            #     scores_max[i] = T.if_then_else(scores_max[i] == -T.infinity(accum_dtype), 0, scores_max[i])
            for i in T.Parallel(block_M):
                scores_scale[i] = T.exp2(scores_max_prev[i] * scale - scores_max[i] * scale)
            for i, j in T.Parallel(block_M, block_N):
                # Instead of computing exp(x - max), we compute exp2(x * log_2(e) -
                # max * log_2(e)) This allows the compiler to use the ffma
                # instruction instead of fadd and fmul separately.
                acc_s[i, j] = T.exp2(acc_s[i, j] * scale - scores_max[i] * scale)
            T.reduce_sum(acc_s, scores_sum, dim=1)
            for i in T.Parallel(block_M):
                logsum[i] = logsum[i] * scores_scale[i] + scores_sum[i]
            T.copy(acc_s, acc_s_cast)

        @T.macro
        def Rescale(
101
102
                acc_o: T.FragmentBuffer([block_M, dim], accum_dtype),
                scores_scale: T.FragmentBuffer([block_M], accum_dtype),
103
104
105
106
107
108
        ):
            for i, j in T.Parallel(block_M, dim):
                acc_o[i, j] *= scores_scale[i]

        @T.prim_func
        def main(
109
110
111
112
                Q: T.Tensor(shape, dtype),
                K: T.Tensor(shape, dtype),
                V: T.Tensor(shape, dtype),
                Output: T.Tensor(shape, dtype),
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
        ):
            with T.Kernel(
                    T.ceildiv(seq_len, block_M), heads, batch, threads=threads) as (bx, by, bz):
                Q_shared = T.alloc_shared([block_M, dim], dtype)
                K_shared = T.alloc_shared([block_N, dim], dtype)
                V_shared = T.alloc_shared([block_N, dim], dtype)
                O_shared = T.alloc_shared([block_M, dim], dtype)
                acc_s = T.alloc_fragment([block_M, block_N], accum_dtype)
                acc_s_cast = T.alloc_fragment([block_M, block_N], dtype)
                acc_o = T.alloc_fragment([block_M, dim], accum_dtype)
                scores_max = T.alloc_fragment([block_M], accum_dtype)
                scores_max_prev = T.alloc_fragment([block_M], accum_dtype)
                scores_scale = T.alloc_fragment([block_M], accum_dtype)
                scores_sum = T.alloc_fragment([block_M], accum_dtype)
                logsum = T.alloc_fragment([block_M], accum_dtype)

                T.copy(Q[bz, bx * block_M:(bx + 1) * block_M, by, :], Q_shared)
                T.fill(acc_o, 0)
                T.fill(logsum, 0)
                T.fill(scores_max, -T.infinity(accum_dtype))

                loop_range = (
                    T.min(T.ceildiv(seq_len, block_N), T.ceildiv(
136
                        (bx + 1) * block_M, block_N)) if is_causal else T.ceildiv(seq_len, block_N))
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

                for k in T.Pipelined(loop_range, num_stages=num_stages):
                    MMA0(K, Q_shared, K_shared, acc_s, k, bx, by, bz)
                    Softmax(acc_s, acc_s_cast, scores_max, scores_max_prev, scores_scale,
                            scores_sum, logsum)
                    Rescale(acc_o, scores_scale)
                    MMA1(V, V_shared, acc_s_cast, acc_o, k, by, bz)
                for i, j in T.Parallel(block_M, dim):
                    acc_o[i, j] /= logsum[i]
                T.copy(acc_o, O_shared)
                T.copy(O_shared, Output[bz, bx * block_M:(bx + 1) * block_M, by, :])

        return main

    if tune:

153
        @autotune(configs=get_configs(), warmup=10, rep=10)
154
        @tilelang.jit(out_idx=[3])
155
156
157
158
159
160
161
162
163
164
165
166
        def kernel(block_M=None, block_N=None, num_stages=None, threads=None):
            return kernel_func(block_M, block_N, num_stages, threads)

        return kernel()
    else:

        def kernel(block_M, block_N, num_stages, threads):
            return kernel_func(block_M, block_N, num_stages, threads)

        return kernel


167
def ref_program(Q, K, V, is_causal):
168
169
170
    dim = Q.size(-1)
    scores = torch.einsum('bqhd,bkhd->bhqk', Q, K)
    scores = scores / torch.sqrt(torch.tensor(dim, dtype=scores.dtype))
171
    if is_causal:
172
173
174
175
176
177
178
179
180
        seq_len = Q.size(1)
        mask = torch.tril(torch.ones(seq_len, seq_len, device=scores.device))
        mask = mask.unsqueeze(0).unsqueeze(0)
        scores = scores.masked_fill(mask == 0, float('-inf'))
    attention_weights = F.softmax(scores, dim=-1)
    output = torch.einsum('bhqk,bkhd->bqhd', attention_weights, V)
    return output


181
182
183
184
185
186
187
188
def main(
    batch: int = 8,
    heads: int = 32,
    seq_len: int = 4096,
    dim: int = 128,
    is_causal: bool = False,
    tune: bool = False,
):
189
190
    flops_per_matmul = 2.0 * batch * heads * seq_len * seq_len * dim
    total_flops = 2 * flops_per_matmul
191
    if is_causal:
192
193
        total_flops *= 0.5

194
    if (not tune):
195
        kernel = flashattn(
196
            batch, heads, seq_len, dim, is_causal, tune=tune)(
197
                block_M=128, block_N=128, num_stages=1, threads=128)
198
        ref_program_processed = partial(ref_program, is_causal=is_causal)
199
        profiler = kernel.get_profiler()
200
        profiler.assert_allclose(ref_program_processed, rtol=0.01, atol=0.01)
201
        print("All checks pass.")
202
        latency = profiler.do_bench(ref_program_processed, warmup=500)
203
204
        print("Ref: {:.2f} ms".format(latency))
        print("Ref: {:.2f} TFlops".format(total_flops / latency * 1e-9))
205
        latency = profiler.do_bench(warmup=500)
206
207
208
        print("Tile-lang: {:.2f} ms".format(latency))
        print("Tile-lang: {:.2f} TFlops".format(total_flops / latency * 1e-9))
    else:
209
        best_result = flashattn(batch, heads, seq_len, dim, is_causal, tune=tune)
210
211
212
        best_latency = best_result.latency
        best_config = best_result.config
        ref_latency = best_result.ref_latency
213
214
215
        print(f"Best latency: {best_latency}")
        print(f"Best TFlops: {total_flops / best_latency * 1e-9}")
        print(f"Best config: {best_config}")
216
217
218
219
220
221
222
223
224
225
226
227
228
        print(f"Ref latency: {ref_latency}")


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument('--batch', type=int, default=8, help='batch size')
    parser.add_argument('--heads', type=int, default=32, help='heads')
    parser.add_argument('--seq_len', type=int, default=4096, help='sequence length')
    parser.add_argument('--dim', type=int, default=128, help='dim')
    parser.add_argument('--is_causal', action='store_true', help='causal')
    parser.add_argument('--tune', action='store_true', help='tune configs')
    args = parser.parse_args()
    main(args.batch, args.heads, args.seq_len, args.dim, args.is_causal, args.tune)