make_packed_api.cc 21.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file make_packed_api.cc Lower PrimFunc to use the packed function API.
 */
23
#include <tvm/ffi/extra/module.h>
24
25
#include <tvm/ffi/function.h>
#include <tvm/ffi/reflection/registry.h>
26
#include <tvm/runtime/device_api.h>
27
#include <tvm/runtime/module.h>
28
29
30
31
32
33
34
35
#include <tvm/target/target.h>
#include <tvm/tir/analysis.h>
#include <tvm/tir/buffer.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

36
#include <unordered_set>
37
38
39
#include <utility>
#include <vector>

40
#include "../op/builtin.h"
41
#include "arg_binder.h"
42
#include "merge_if_stmt.h"
43
44
45
46
47
#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {
using namespace tir;
48
using namespace ffi;
49
50
51
52

namespace {
class ReturnRewriter : public StmtMutator {
public:
53
  explicit ReturnRewriter(Var ret_var) : ret_var_(ret_var) {}
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

  Stmt VisitStmt_(const ForNode *node) override {
    if (node->kind == ForKind::kParallel)
      in_parallel_ += 1;
    Stmt ret = StmtMutator::VisitStmt_(node);
    if (node->kind == ForKind::kParallel)
      in_parallel_ -= 1;
    return ret;
  }

  Stmt VisitStmt_(const EvaluateNode *node) override {
    Stmt ret = StmtMutator::VisitStmt_(node);
    const EvaluateNode *eval = ret.as<EvaluateNode>();
    ICHECK(eval);
    if (const CallNode *call = eval->value.as<CallNode>()) {
      if (call->op.same_as(builtin::ret())) {
        ICHECK_EQ(in_parallel_, 0)
            << "tir.ret cannot be used in parallel scope.";
        ICHECK_EQ(call->args.size(), 1) << "tir.ret expect a single argument.";
        ret = WriteToOut(call->args[0]);
      }
    }
    return ret;
  }

private:
  struct ConvertedInfo {
81
    int type_index{-1};
82
83
84
    PrimExpr expr;
  };

85
  ConvertedInfo ConvertForFFI(const PrimExpr &val) {
86
87
88
89
    ConvertedInfo info;

    // convert val's data type to FFI data type, return type code
    DataType dtype = val.dtype();
90
91
92
93
94
    if (dtype.is_bool()) {
      info.type_index = ffi::TypeIndex::kTVMFFIBool;
      info.expr = Cast(DataType::Int(64), val);

    } else if (dtype.is_int() || dtype.is_uint()) {
95
      info.type_index = ffi::TypeIndex::kTVMFFIInt;
96
97
      info.expr = Cast(DataType::Int(64), val);
    } else if (dtype.is_float()) {
98
      info.type_index = ffi::TypeIndex::kTVMFFIFloat;
99
100
      info.expr = Cast(DataType::Float(64), val);
    } else if (dtype.is_void()) {
101
      info.type_index = ffi::TypeIndex::kTVMFFINone;
102
103
104
105
106
107
108
109
      info.expr = val;
    } else {
      LOG(FATAL) << "data type " << dtype << " not supported yet";
    }

    return info;
  }

110
  Stmt WriteToOut(PrimExpr val) {
111
    auto info = ConvertForFFI(val);
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
    Stmt store_tindex = tir::Evaluate(
        tir::Call(DataType::Int(32), tir::builtin::tvm_struct_set(),
                  {ret_var_, IntImm(DataType::Int(32), 0),
                   IntImm(DataType::Int(32), tir::builtin::kTVMFFIAnyTypeIndex),
                   IntImm(DataType::Int(32), info.type_index)}));
    Stmt store_zero_padding = tir::Evaluate(tir::Call(
        DataType::Int(32), tir::builtin::tvm_struct_set(),
        {ret_var_, IntImm(DataType::Int(32), 0),
         IntImm(DataType::Int(32), tir::builtin::kTVMFFIAnyZeroPadding),
         IntImm(DataType::Int(32), 0)}));
    Stmt store_val = tir::Evaluate(tir::Call(
        DataType::Int(32), tir::builtin::tvm_struct_set(),
        {ret_var_, IntImm(DataType::Int(32), 0),
         IntImm(DataType::Int(32), tir::builtin::kTVMFFIAnyUnionValue),
         info.expr}));
127
    Stmt ret_zero = Evaluate(tvm::ret(0));
128
    return SeqStmt({store_tindex, store_zero_padding, store_val, ret_zero});
129
130
131
132
133
134
135
136
  }

  Var ret_var_;
  int in_parallel_{0};
};

class SubroutineCallRewriter : public StmtExprMutator {
public:
137
138
139
  static ffi::Optional<Stmt>
  Apply(const ffi::Map<GlobalVar, ffi::String> &packed_func_methods,
        Stmt stmt) {
140
    SubroutineCallRewriter rewriter(packed_func_methods);
141
    stmt = rewriter.VisitStmt(stmt);
142
143
144
    if (rewriter.made_change_) {
      return stmt;
    } else {
145
      return std::nullopt;
146
147
148
149
150
    }
  }

private:
  explicit SubroutineCallRewriter(
151
      const ffi::Map<GlobalVar, ffi::String> &packed_func_methods)
152
153
154
155
156
157
      : packed_func_methods(packed_func_methods) {}

  PrimExpr VisitExpr_(const CallNode *op) override {
    auto node = Downcast<Call>(StmtExprMutator::VisitExpr_(op));

    if (auto *gvar_ptr = node->op.as<GlobalVarNode>()) {
158
      auto gvar = ffi::GetRef<GlobalVar>(gvar_ptr);
159
      if (auto symbol = packed_func_methods.Get(gvar)) {
160
        ffi::Array<PrimExpr> cpacked_args;
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
        cpacked_args.push_back(tir::StringImm(symbol.value()));
        for (auto arg : node->args) {
          cpacked_args.push_back(arg);
        }

        // push an empty handle to be compatible with current cpacked convention
        cpacked_args.push_back(tir::make_zero(DataType::Handle()));
        made_change_ = true;
        return tir::Call(node->dtype, tir::builtin::tvm_call_cpacked(),
                         cpacked_args);
      }
    }

    return node;
  }
176
  const ffi::Map<GlobalVar, ffi::String> &packed_func_methods;
177
178
179
180
181
  bool made_change_{false};
};

} // namespace

182
183
inline Stmt MakeAssertEQ(PrimExpr lhs, PrimExpr rhs, std::string msg) {
  return AssertStmt(lhs == rhs, tvm::tir::StringImm(msg), Evaluate(0));
184
185
}

186
187
inline Stmt MakeAssertNotNull(PrimExpr ptr, std::string msg) {
  Call isnull(DataType::Bool(), builtin::isnullptr(), {ptr});
188
189
190
191
192
193
194
195
  return AssertStmt(!isnull, tvm::tir::StringImm(msg), Evaluate(0));
}

/* \brief Return the global_symbol of the function, if it should be updated
 *
 * \param func The function to be inspected
 *
 * \returns The global_symbol to be used for the function at call
196
 * sites, or std::nullopt if the function is to remain unchanged.
197
198
199
200
201
202
 */
Optional<String> RequiresPackedAPI(const PrimFunc &func) {
  // A function with an explicit calling convention has already been
  // lowered, and should not be modified.
  if (auto opt = func->GetAttr<Integer>(tvm::attr::kCallingConv)) {
    if (CallingConv(opt.value()->value) != CallingConv::kDefault) {
203
      return std::nullopt;
204
205
206
207
208
    }
  }

  // Internal function calls do not need the PackedFunc API
  auto global_symbol = func->GetAttr<String>(tvm::attr::kGlobalSymbol);
209
  if (!global_symbol) {
210
    return std::nullopt;
211
212
213
214
215
216
217
  }

  return global_symbol;
}

PrimFunc MakePackedAPI(PrimFunc func) {
  auto global_symbol = RequiresPackedAPI(func);
218
  if (!global_symbol) {
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
    return func;
  }
  std::string name_hint = global_symbol.value();

  Target target = [&]() {
    auto opt = func->GetAttr<Target>(tvm::attr::kTarget);
    ICHECK(opt) << "MakePackedAPI required the function to be annotated with "
                   "tvm::attr::kTarget ("
                << tvm::attr::kTarget
                << "), but the function only has attributes " << func->attrs;
    return opt.value();
  }();
  int target_device_type = target->GetTargetDeviceType();

  // A function without a host target has already been lowered.
  Target target_host;
  if (auto opt = target->GetHost()) {
    target_host = opt.value();
  } else {
    return func;
  }

  auto *func_ptr = func.CopyOnWrite();
242
  // set the global symbol to the packed function name
243
244
245
246
247
  const Stmt nop = Evaluate(0);
  int num_args = static_cast<int>(func_ptr->params.size());

  // Data field definitions
  // The packed fields
248
  Var v_self_handle("self_handle", DataType::Handle());
249
250
  Var v_packed_args("args", DataType::Handle());
  Var v_num_packed_args("num_args", DataType::Int(32));
251
  Var v_result("result", PointerType(PrimType(DataType::Void())));
252
253
254
255
256
257
258
259
260
261
262
263
264

  // The device context
  Var device_id("dev_id");
  Integer device_type(target_device_type);
  // seq_init gives sequence of initialization
  // seq_check gives sequence of later checks after init
  std::vector<Stmt> seq_init, seq_check, arg_buffer_declarations;
  std::unordered_map<const VarNode *, PrimExpr> vmap;
  ArgBinder binder(&vmap);

  // ---------------------------
  // local function definitions
  // load i-th argument as type t
265
266
  auto f_load_arg_value = [&](DataType arg_type, int i) {
    ffi::Array<PrimExpr> call_args{
267
        v_packed_args, IntImm(DataType::Int(32), i),
268
        IntImm(DataType::Int(32), builtin::kTVMFFIAnyUnionValue)};
269
    // load 64 bit version
270
    DataType api_type = APIType(arg_type);
271
272
    PrimExpr res = Call(api_type, builtin::tvm_struct_get(), call_args);
    // cast to the target version.
273
274
    if (api_type != arg_type) {
      res = Cast(arg_type, res);
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
    }
    return res;
  };

  // Assert correct type codes for each argument.  This must be done
  // *before* any initialization steps produced by
  // `binder.BindDLTensor()`.  The validity of those initialization
  // steps depends on the correct types being present, and must not
  // occur before the type codes are actually checked.
  seq_init.push_back(
      MakeAssertEQ(v_num_packed_args, num_args, [&]() -> std::string {
        std::ostringstream error_message;
        error_message << name_hint << ": num_args should be " << num_args;
        return error_message.str();
      }()));

291
292
293
294
  if (num_args > 0) {
    seq_init.push_back(
        MakeAssertNotNull(v_packed_args, name_hint + ": args pointer is NULL"));
  }
295
296
297
298
299
300

  // Need to delay binding of the buffers, in case some arguments also
  // appear in the buffer.
  std::vector<std::pair<PrimExpr, Var>> var_def;
  std::vector<std::pair<Var, Buffer>> buffer_def;

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
  // First, collect a reverse map from Buffer->data var to parameter var so we
  // can detect whether a buffer is actually used by the function body. In
  // addition, collect variables that appear in the buffer's shape/stride so we
  // can consider uses of those symbols as a use of the buffer itself.
  std::unordered_map<const VarNode *, const VarNode *> data_var2param;
  std::unordered_map<const VarNode *, std::vector<const VarNode *>>
      shape_var2params;
  for (const auto &kv : func_ptr->buffer_map) {
    const Var &param = kv.first;
    const Buffer &buf = kv.second;
    data_var2param[buf->data.get()] = param.get();
    auto record_shape_vars = [&](const PrimExpr &e) {
      PostOrderVisit(e, [&](const ObjectRef &n) {
        if (const auto *v = n.as<VarNode>()) {
          shape_var2params[v].push_back(param.get());
        }
      });
    };
    for (const PrimExpr &e : buf->shape)
      record_shape_vars(e);
    for (const PrimExpr &e : buf->strides)
      record_shape_vars(e);
    if (buf->elem_offset.defined())
      record_shape_vars(buf->elem_offset);
  }

  // A visitor that marks a buffer as used when its underlying data var is
  // referenced (e.g. BufferLoad/BufferStore or any direct var usage).
  struct UsedBufferDetector : public StmtExprVisitor {
    UsedBufferDetector(
        const std::unordered_map<const VarNode *, const VarNode *> &data2param,
        const std::unordered_map<const VarNode *, std::vector<const VarNode *>>
            &shape2params)
        : data2param(data2param), shape2params(shape2params) {}
    void VisitExpr_(const VarNode *op) override {
      auto it = data2param.find(op);
      if (it != data2param.end()) {
        used_params.insert(it->second);
      }
      auto it2 = shape2params.find(op);
      if (it2 != shape2params.end()) {
        for (const VarNode *p : it2->second)
          used_params.insert(p);
      }
      StmtExprVisitor::VisitExpr_(op);
    }
    void VisitStmt_(const BufferStoreNode *op) override {
      auto it = data2param.find(op->buffer->data.get());
      if (it != data2param.end()) {
        used_params.insert(it->second);
      }
      StmtExprVisitor::VisitStmt_(op);
    }
    void VisitExpr_(const BufferLoadNode *op) override {
      auto it = data2param.find(op->buffer->data.get());
      if (it != data2param.end()) {
        used_params.insert(it->second);
      }
      StmtExprVisitor::VisitExpr_(op);
    }

    const std::unordered_map<const VarNode *, const VarNode *> &data2param;
    const std::unordered_map<const VarNode *, std::vector<const VarNode *>>
        &shape2params;
    std::unordered_set<const VarNode *> used_params;
  };

  UsedBufferDetector detector(data_var2param, shape_var2params);
  detector(func_ptr->body);

  // Build the packed argument handling. While doing so, keep track of whether
  // each parameter buffer is actually used. Unused input buffers can be
  // nullable and do not require DLTensor field dereferences.
  std::unordered_set<const VarNode *> used_param_buffers = detector.used_params;

376
377
  for (int i = 0; i < static_cast<int>(func_ptr->params.size()); ++i) {
    Var param = func_ptr->params[i];
378
379
380
381
    PrimExpr arg_value;
    // type index checks
    Var type_index(param->name_hint + ".type_index", DataType::Int(32));
    seq_init.push_back(LetStmt(
382
        type_index,
383
384
385
        tir::Call(DataType::Int(32), builtin::tvm_struct_get(),
                  {v_packed_args, IntImm(DataType::Int(32), i),
                   IntImm(DataType::Int(32), builtin::kTVMFFIAnyTypeIndex)}),
386
        nop));
387
388
    DataType dtype = param.dtype();
    if (dtype.is_handle()) {
389
      std::ostringstream msg;
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
      // Prefer the Buffer name if available; otherwise, fall back to param name
      // (trim _handle).
      std::string display_name;
      auto it_buf = func_ptr->buffer_map.find(param);
      if (it_buf != func_ptr->buffer_map.end()) {
        const auto &kv = *it_buf;
        display_name = kv.second->data->name_hint;
      } else {
        display_name = param->name_hint;
        const char *suffix = "_handle";
        if (display_name.size() >= 7 &&
            display_name.compare(display_name.size() - 7, 7, suffix) == 0) {
          display_name.erase(display_name.size() - 7);
        }
      }
405
406
      msg << "kernel " << name_hint << " input " << display_name
          << " expected pointer or tensor handle";
407
      seq_init.emplace_back(
408
409
410
411
          AssertStmt(type_index == ffi::TypeIndex::kTVMFFINone ||
                         type_index == ffi::TypeIndex::kTVMFFIOpaquePtr ||
                         type_index == ffi::TypeIndex::kTVMFFIDLTensorPtr ||
                         type_index >= ffi::TypeIndex::kTVMFFIStaticObjectBegin,
412
                     tvm::tir::StringImm(msg.str()), nop));
413
414
415
416
417
418
419
420
421
422
423
424
425
      // if type_index is Tensor, we need to add the offset of the DLTensor
      // header which always equals 16 bytes, this ensures that T.handle always
      // shows up as a DLTensor*
      const int64_t object_cell_offset = sizeof(TVMFFIObject);
      static_assert(object_cell_offset == 24);
      arg_value = f_load_arg_value(param.dtype(), i);
      PrimExpr handle_from_tensor =
          Call(DataType::Handle(), tir::builtin::handle_add_byte_offset(),
               {arg_value, IntImm(DataType::Int(32), object_cell_offset)});
      arg_value = Select(type_index == ffi::TypeIndex::kTVMFFITensor,
                         handle_from_tensor, arg_value);
    } else if (dtype.is_bool()) {
      std::ostringstream msg;
426
427
      msg << "kernel " << name_hint << " scalar " << param->name_hint
          << " expected boolean";
428
429
430
431
432
433
434
435
      seq_init.emplace_back(
          AssertStmt(type_index == ffi::TypeIndex::kTVMFFIBool ||
                         type_index == ffi::TypeIndex::kTVMFFIInt,
                     tvm::tir::StringImm(msg.str()), nop));
      arg_value =
          Cast(DataType::Bool(), f_load_arg_value(DataType::Int(64), i));

    } else if (dtype.is_int() || dtype.is_uint()) {
436
      std::ostringstream msg;
437
438
      msg << "kernel " << name_hint << " scalar " << param->name_hint
          << " expected integer";
439
440
441
442
443
      seq_init.emplace_back(
          AssertStmt(type_index == ffi::TypeIndex::kTVMFFIInt ||
                         type_index == ffi::TypeIndex::kTVMFFIBool,
                     tvm::tir::StringImm(msg.str()), nop));
      arg_value = f_load_arg_value(param.dtype(), i);
444
    } else {
445
      ICHECK(dtype.is_float());
446
      std::ostringstream msg;
447
448
      msg << "kernel " << name_hint << " scalar " << param->name_hint
          << " expected float";
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
      seq_init.emplace_back(
          AssertStmt(type_index == ffi::TypeIndex::kTVMFFIFloat ||
                         type_index == ffi::TypeIndex::kTVMFFIInt ||
                         type_index == ffi::TypeIndex::kTVMFFIBool,
                     tvm::tir::StringImm(msg.str()), nop));
      // use select so we can also handle int conversion to bool
      arg_value = tir::Select(
          type_index == ffi::TypeIndex::kTVMFFIFloat,
          /* true_value = */ f_load_arg_value(param.dtype(), i),
          /* false_value = */
          Cast(param.dtype(), f_load_arg_value(DataType::Int(64), i)));
    }
    var_def.emplace_back(arg_value, param);
    if (func_ptr->buffer_map.count(param)) {
      // buffer binding now depends on type index
      // if the index is Tensor handle, we need to offset to get the DLTensor*
      buffer_def.emplace_back(param, func_ptr->buffer_map[param]);
466
467
468
    }
  }

469
470
471
472
  // signature: (void* handle, TVMFFIAny* packed_args, int num_args, TVMFFIAny*
  // v_result)
  ffi::Array<Var> args{v_self_handle, v_packed_args, v_num_packed_args,
                       v_result};
473
474
475
476
477
478
479
480
481
482
483
484

  // Arg definitions are defined before buffer binding to avoid the use before
  // def errors.
  //
  // For example, for auto broadcasting, checks are required to guarantee that
  // either 0 or the original stride will be correctly used. Checks here have
  // to use the args that may have no let binding yet. Therefore, hoisting let
  // binding for args before buffer declaration is needed.
  for (const auto &[expr, param] : var_def) {
    binder.Bind(param, expr, name_hint + "." + param->name_hint, true);
  }

485
  for (const auto &[var, buffer] : buffer_def) {
486
487
488
489
490
    // Prefer buffer data var name in diagnostics to avoid exposing low-level
    // handle vars
    std::string display = name_hint + "." + buffer->data->name_hint;
    binder.BindDLTensor(buffer, device_type, device_id, var, display,
                        used_param_buffers.count(var.get()));
491
    arg_buffer_declarations.push_back(DeclBuffer(buffer, nop));
492
  }
493
494
495
496
497
498
499
500
501
  // reset global symbol to attach prefix
  func = WithAttrs(
      std::move(func),
      {{tvm::attr::kCallingConv, static_cast<int>(CallingConv::kCPackedFunc)},
       {tvm::attr::kTarget, target_host},
       {tvm::attr::kGlobalSymbol,
        ffi::symbol::tvm_ffi_symbol_prefix + global_symbol.value()}});

  Stmt body = ReturnRewriter(v_result)(func_ptr->body);
502
503
504
505
  body = AttrStmt(make_zero(DataType::Int(32)), tir::attr::compute_scope,
                  StringImm(name_hint + "_compute_"), body);
  // Set device context
  if (vmap.count(device_id.get())) {
506
    ffi::Any node = ffi::String("default");
507
508
509
510
    seq_check.push_back(AttrStmt(node, tir::attr::device_id, device_id, nop));
    seq_check.push_back(
        AttrStmt(node, tir::attr::device_type, device_type, nop));

511
    if (runtime::DeviceAPI::NeedSetDevice(target_device_type)) {
512
      Stmt set_device =
513
          Evaluate(Call(DataType::Int(32), tir::builtin::tvm_call_packed(),
514
515
516
517
518
519
520
521
522
                        {StringImm(runtime::symbol::tvm_set_device),
                         device_type, device_id}));
      body = SeqStmt({set_device, body});
    }
  }

  // Return error code of zero on success
  body = SeqStmt({body, Evaluate(ret(Integer(0)))});

523
524
525
  body = MergeNest({seq_init, binder.init_nest(), seq_check, binder.asserts(),
                    arg_buffer_declarations},
                   body);
526
527
528
  func_ptr->body = body;
  func_ptr->params = args;

529
530
  ffi::Array<Var> undefined = UndefinedVars(body, func_ptr->params);

531
532
533
534
  ICHECK_EQ(undefined.size(), 0)
      << "In PrimFunc " << name_hint << " variables " << undefined
      << " are used, but are not passed in as API arguments";

535
536
537
  func_ptr->buffer_map = ffi::Map<Var, Buffer>();
  func_ptr->ret_type = PrimType(DataType::Int(32));
  // return the function.
538
539
540
541
542
  return func;
}

tvm::transform::Pass MakePackedAPI() {
  using tvm::transform::Pass;
543
  auto pass_func = [](IRModule mod, const tvm::transform::PassContext &ctx) {
544
545
546
    Map<GlobalVar, String> packed_func_methods;
    for (const auto &[gvar, base_func] : mod->functions) {
      if (auto opt = base_func.as<PrimFunc>()) {
547
        const auto &prim_func = opt.value();
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
        if (auto global_symbol = RequiresPackedAPI(prim_func)) {
          packed_func_methods.Set(gvar, global_symbol.value());
        }
      }
    }

    IRModuleNode *mptr = mod.CopyOnWrite();
    IRModule updates;

    for (const auto &[gvar, base_func] : mptr->functions) {
      if (auto opt = base_func.as<PrimFunc>()) {
        auto func = opt.value();
        auto orig_func = func;

        if (auto body = SubroutineCallRewriter::Apply(packed_func_methods,
                                                      func->body)) {
          func.CopyOnWrite()->body = body.value();
        }
        func = MakePackedAPI(std::move(func));
567
        func = MergeIfStmtSubstitute(func);
568
569
570
571
572
573
574

        if (!func.same_as(orig_func)) {
          updates->Add(gvar, func);
        }
      }
    }

575
    if (!updates->functions.empty()) {
576
577
578
579
580
581
582
583
      mod.CopyOnWrite()->Update(updates);
    }
    return mod;
  };

  return tvm::transform::CreateModulePass(pass_func, 0, "tl.MakePackedAPI", {});
}

584
TVM_FFI_STATIC_INIT_BLOCK() {
585
586
587
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.MakePackedAPI",
                        []() { return MakePackedAPI(); });
588
}
589
590
591

} // namespace tl
} // namespace tvm