make_packed_api.cc 18.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
/*
 * Licensed to the Apache Software Foundation (ASF) under one
 * or more contributor license agreements.  See the NOTICE file
 * distributed with this work for additional information
 * regarding copyright ownership.  The ASF licenses this file
 * to you under the Apache License, Version 2.0 (the
 * "License"); you may not use this file except in compliance
 * with the License.  You may obtain a copy of the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing,
 * software distributed under the License is distributed on an
 * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
 * KIND, either express or implied.  See the License for the
 * specific language governing permissions and limitations
 * under the License.
 */

/*!
 * \file make_packed_api.cc Lower PrimFunc to use the packed function API.
 */
23
24
#include <tvm/ffi/function.h>
#include <tvm/ffi/reflection/registry.h>
25
#include <tvm/runtime/device_api.h>
26
#include <tvm/runtime/module.h>
27
28
29
30
31
32
33
34
35
36
37
#include <tvm/target/target.h>
#include <tvm/tir/analysis.h>
#include <tvm/tir/buffer.h>
#include <tvm/tir/builtin.h>
#include <tvm/tir/expr.h>
#include <tvm/tir/stmt_functor.h>
#include <tvm/tir/transform.h>

#include <utility>
#include <vector>

38
#include "../op/builtin.h"
39
#include "arg_binder.h"
40
41
42
43
44
45
46
47
48
49
50
#include "tir/transforms/ir_utils.h"

namespace tvm {
namespace tl {
using namespace tir;
static constexpr const char *kDeviceContextVar = "device_api_context";

namespace {
class ReturnRewriter : public StmtMutator {
public:
  explicit ReturnRewriter(Var ret_var, Var ret_tcode)
51
      : ret_var_(std::move(ret_var)), ret_tcode_(std::move(ret_tcode)) {}
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78

  Stmt VisitStmt_(const ForNode *node) override {
    if (node->kind == ForKind::kParallel)
      in_parallel_ += 1;
    Stmt ret = StmtMutator::VisitStmt_(node);
    if (node->kind == ForKind::kParallel)
      in_parallel_ -= 1;
    return ret;
  }

  Stmt VisitStmt_(const EvaluateNode *node) override {
    Stmt ret = StmtMutator::VisitStmt_(node);
    const EvaluateNode *eval = ret.as<EvaluateNode>();
    ICHECK(eval);
    if (const CallNode *call = eval->value.as<CallNode>()) {
      if (call->op.same_as(builtin::ret())) {
        ICHECK_EQ(in_parallel_, 0)
            << "tir.ret cannot be used in parallel scope.";
        ICHECK_EQ(call->args.size(), 1) << "tir.ret expect a single argument.";
        ret = WriteToOut(call->args[0]);
      }
    }
    return ret;
  }

private:
  struct ConvertedInfo {
79
    int type_index{-1};
80
81
82
83
84
    PrimExpr expr;
    Buffer dummy_val_buffer;
    Buffer dummy_tcode_buffer;
  };

85
  ConvertedInfo ConvertForFFI(const PrimExpr &val) {
86
87
88
89
90
    ConvertedInfo info;

    // convert val's data type to FFI data type, return type code
    DataType dtype = val.dtype();
    if (dtype.is_int() || dtype.is_uint()) {
91
      info.type_index = ffi::TypeIndex::kTVMFFIInt;
92
93
      info.expr = Cast(DataType::Int(64), val);
    } else if (dtype.is_float()) {
94
      info.type_index = ffi::TypeIndex::kTVMFFIFloat;
95
96
      info.expr = Cast(DataType::Float(64), val);
    } else if (dtype.is_void()) {
97
      info.type_index = ffi::TypeIndex::kTVMFFINone;
98
99
100
101
102
103
104
      info.expr = val;
    } else {
      LOG(FATAL) << "data type " << dtype << " not supported yet";
    }

    // If multiple return locations have the same data type, use the
    // same dummy buffer declaration.
105
    auto it = dummy_val_buffer_map_.find(info.type_index);
106
107
108
109
110
111
    if (it != dummy_val_buffer_map_.end()) {
      info.dummy_val_buffer = it->second;
    } else {
      info.dummy_val_buffer =
          Buffer(ret_var_, info.expr.dtype(), {1}, {1}, ConstInt32(0),
                 ret_var_->name_hint, 0, 0, kDefault);
112
      dummy_val_buffer_map_[info.type_index] = info.dummy_val_buffer;
113
114
    }

115
116
    // The type_index is always a 32-bit int, so we don't need to have a
    // separate map.
117
118
119
120
121
122
123
124
125
126
    if (!dummy_tcode_buffer_.defined()) {
      dummy_tcode_buffer_ =
          Buffer(ret_tcode_, DataType::Int(32), {1}, {1}, ConstInt32(0),
                 ret_tcode_->name_hint, 0, 0, kDefault);
    }
    info.dummy_tcode_buffer = dummy_tcode_buffer_;

    return info;
  }

127
  Stmt WriteToOut(const PrimExpr &val) {
128
129
    auto info = ConvertForFFI(val);
    Stmt store_val = BufferStore(info.dummy_val_buffer, info.expr, {0});
130
131
    Stmt store_tcode =
        BufferStore(info.dummy_tcode_buffer, info.type_index, {0});
132
133
134
135
136
137
138
139
140
141
142
143
144
    Stmt ret_zero = Evaluate(tvm::ret(0));
    return SeqStmt({store_val, store_tcode, ret_zero});
  }

  Var ret_var_;
  Var ret_tcode_;
  int in_parallel_{0};

  std::unordered_map<int, Buffer> dummy_val_buffer_map_;
  Buffer dummy_tcode_buffer_;
};

Stmt RewriteReturn(Stmt body, Var ret_var, Var ret_tcode) {
145
146
  ReturnRewriter rewriter(std::move(ret_var), std::move(ret_tcode));
  return rewriter(std::move(body));
147
148
149
150
151
152
153
}

class SubroutineCallRewriter : public StmtExprMutator {
public:
  static Optional<Stmt> Apply(const Map<GlobalVar, String> &packed_func_methods,
                              Stmt stmt) {
    SubroutineCallRewriter rewriter(packed_func_methods);
154
    stmt = rewriter.VisitStmt(stmt);
155
156
157
    if (rewriter.made_change_) {
      return stmt;
    } else {
158
      return std::nullopt;
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
    }
  }

private:
  explicit SubroutineCallRewriter(
      const Map<GlobalVar, String> &packed_func_methods)
      : packed_func_methods(packed_func_methods) {}

  PrimExpr VisitExpr_(const CallNode *op) override {
    auto node = Downcast<Call>(StmtExprMutator::VisitExpr_(op));

    if (auto *gvar_ptr = node->op.as<GlobalVarNode>()) {
      auto gvar = GetRef<GlobalVar>(gvar_ptr);
      if (auto symbol = packed_func_methods.Get(gvar)) {
        Array<PrimExpr> cpacked_args;
        cpacked_args.push_back(tir::StringImm(symbol.value()));
        for (auto arg : node->args) {
          cpacked_args.push_back(arg);
        }

        // push an empty handle to be compatible with current cpacked convention
        cpacked_args.push_back(tir::make_zero(DataType::Handle()));
        made_change_ = true;
        return tir::Call(node->dtype, tir::builtin::tvm_call_cpacked(),
                         cpacked_args);
      }
    }

    return node;
  }
  const Map<GlobalVar, String> &packed_func_methods;
  bool made_change_{false};
};

} // namespace

195
196
197
inline Stmt MakeAssertEQ(PrimExpr lhs, PrimExpr rhs, const std::string &msg) {
  return AssertStmt(std::move(lhs) == std::move(rhs), tvm::tir::StringImm(msg),
                    Evaluate(0));
198
199
}

200
201
inline Stmt MakeAssertNotNull(PrimExpr ptr, const std::string &msg) {
  Call isnull(DataType::Bool(), builtin::isnullptr(), {std::move(ptr)});
202
203
204
205
206
207
208
209
  return AssertStmt(!isnull, tvm::tir::StringImm(msg), Evaluate(0));
}

/* \brief Return the global_symbol of the function, if it should be updated
 *
 * \param func The function to be inspected
 *
 * \returns The global_symbol to be used for the function at call
210
 * sites, or std::nullopt if the function is to remain unchanged.
211
212
213
214
215
216
 */
Optional<String> RequiresPackedAPI(const PrimFunc &func) {
  // A function with an explicit calling convention has already been
  // lowered, and should not be modified.
  if (auto opt = func->GetAttr<Integer>(tvm::attr::kCallingConv)) {
    if (CallingConv(opt.value()->value) != CallingConv::kDefault) {
217
      return std::nullopt;
218
219
220
221
222
223
    }
  }

  // Internal function calls do not need the PackedFunc API
  auto global_symbol = func->GetAttr<String>(tvm::attr::kGlobalSymbol);
  if (!global_symbol.defined()) {
224
    return std::nullopt;
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
  }

  return global_symbol;
}

PrimFunc MakePackedAPI(PrimFunc func) {
  auto global_symbol = RequiresPackedAPI(func);
  if (!global_symbol.defined()) {
    return func;
  }
  std::string name_hint = global_symbol.value();

  Target target = [&]() {
    auto opt = func->GetAttr<Target>(tvm::attr::kTarget);
    ICHECK(opt) << "MakePackedAPI required the function to be annotated with "
                   "tvm::attr::kTarget ("
                << tvm::attr::kTarget
                << "), but the function only has attributes " << func->attrs;
    return opt.value();
  }();
  int target_device_type = target->GetTargetDeviceType();

  // A function without a host target has already been lowered.
  Target target_host;
  if (auto opt = target->GetHost()) {
    target_host = opt.value();
  } else {
    return func;
  }

  auto *func_ptr = func.CopyOnWrite();
  const Stmt nop = Evaluate(0);
  int num_args = static_cast<int>(func_ptr->params.size());

  // Data field definitions
  // The packed fields
  Var v_packed_args("args", DataType::Handle());
  Buffer buf_packed_arg_type_ids =
      decl_buffer({IntImm(DataType::Int(32), func_ptr->params.size())},
                  DataType::Int(32), "arg_type_ids");
  Var v_num_packed_args("num_args", DataType::Int(32));
  Var v_out_ret_value("out_ret_value", PointerType(PrimType(DataType::Void())));
  Var v_out_ret_tcode("out_ret_tcode",
                      PointerType(PrimType(DataType::Int(32))));
  Var v_resource_handle("resource_handle", DataType::Handle());
  // The arguments of the function.

  // The device context
  Var device_id("dev_id");
  Integer device_type(target_device_type);
  // seq_init gives sequence of initialization
  // seq_check gives sequence of later checks after init
  std::vector<Stmt> seq_init, seq_check, arg_buffer_declarations;
  std::unordered_map<const VarNode *, PrimExpr> vmap;
  ArgBinder binder(&vmap);
280
281
282
283
  std::vector<Stmt> shape_checks;
  tvm::transform::PassContext ctxt = tvm::transform::PassContext::Current();
  bool disable_dynamic_tail_split =
      ctxt->GetConfig<Bool>(kDisableDynamicTailSplit, Bool(true)).value();
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

  // ---------------------------
  // local function definitions
  // load i-th argument as type t
  auto f_arg_value = [&](DataType t, int i) {
    Array<PrimExpr> call_args{
        v_packed_args, IntImm(DataType::Int(32), i),
        IntImm(DataType::Int(32), builtin::kTVMValueContent)};
    // load 64 bit version
    DataType api_type = APIType(t);
    PrimExpr res = Call(api_type, builtin::tvm_struct_get(), call_args);
    // cast to the target version.
    if (api_type != t) {
      res = Cast(t, res);
    }
    return res;
  };

  // Find the device API context argument based on name
  for (const auto &param : func_ptr->params) {
    if (param->name_hint == kDeviceContextVar) {
      num_args--;
      v_resource_handle = param;
      break;
    }
  }

  // Assert correct type codes for each argument.  This must be done
  // *before* any initialization steps produced by
  // `binder.BindDLTensor()`.  The validity of those initialization
  // steps depends on the correct types being present, and must not
  // occur before the type codes are actually checked.
  seq_init.push_back(
      MakeAssertEQ(v_num_packed_args, num_args, [&]() -> std::string {
        std::ostringstream error_message;
        error_message << name_hint << ": num_args should be " << num_args;
        return error_message.str();
      }()));

  seq_init.push_back(MakeAssertNotNull(
      v_packed_args, name_hint + ": TVMValue* arg pointer was NULL"));
  seq_init.push_back(MakeAssertNotNull(
      buf_packed_arg_type_ids->data, name_hint + ": int* type_codes was NULL"));

  seq_init.emplace_back(DeclBuffer(buf_packed_arg_type_ids, nop));

  // Need to delay binding of the buffers, in case some arguments also
  // appear in the buffer.
  std::vector<std::pair<PrimExpr, Var>> var_def;
  std::vector<std::pair<Var, Buffer>> buffer_def;

  for (int i = 0; i < static_cast<int>(func_ptr->params.size()); ++i) {
    Var param = func_ptr->params[i];

    // Ignore the device context argument, as it will still be passed
    // as a native argument.
    if (param->name_hint == kDeviceContextVar) {
      continue;
    }

    var_def.emplace_back(f_arg_value(param.dtype(), i), param);
    if (func_ptr->buffer_map.count(param)) {
      buffer_def.emplace_back(param, func_ptr->buffer_map[param]);
    }

    // type code checks
350
    Var type_index(param->name_hint + ".code", DataType::Int(32));
351
    seq_init.emplace_back(LetStmt(
352
        type_index,
353
354
355
356
357
358
359
        BufferLoad(buf_packed_arg_type_ids, {IntImm(DataType::Int(32), i)}),
        nop));
    DataType t = param.dtype();
    if (t.is_handle()) {
      std::ostringstream msg;
      msg << name_hint << ": Expect arg[" << i << "] to be pointer";
      seq_init.emplace_back(
360
361
362
363
          AssertStmt(type_index == ffi::TypeIndex::kTVMFFINone ||
                         type_index == ffi::TypeIndex::kTVMFFIOpaquePtr ||
                         type_index == ffi::TypeIndex::kTVMFFIDLTensorPtr ||
                         type_index >= ffi::TypeIndex::kTVMFFIStaticObjectBegin,
364
365
366
367
                     tvm::tir::StringImm(msg.str()), nop));
    } else if (t.is_int() || t.is_uint()) {
      std::ostringstream msg;
      msg << name_hint << ": Expect arg[" << i << "] to be int";
368
369
      seq_init.emplace_back(AssertStmt(type_index == kDLInt,
                                       tvm::tir::StringImm(msg.str()), nop));
370
371
372
373
    } else {
      ICHECK(t.is_float());
      std::ostringstream msg;
      msg << name_hint << ": Expect arg[" << i << "] to be float";
374
375
      seq_init.emplace_back(AssertStmt(type_index == kDLFloat,
                                       tvm::tir::StringImm(msg.str()), nop));
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
    }
  }

  Array<Var> args{v_packed_args,     buf_packed_arg_type_ids->data,
                  v_num_packed_args, v_out_ret_value,
                  v_out_ret_tcode,   v_resource_handle};

  // Arg definitions are defined before buffer binding to avoid the use before
  // def errors.
  //
  // For example, for auto broadcasting, checks are required to guarantee that
  // either 0 or the original stride will be correctly used. Checks here have
  // to use the args that may have no let binding yet. Therefore, hoisting let
  // binding for args before buffer declaration is needed.
  for (const auto &[expr, param] : var_def) {
    binder.Bind(param, expr, name_hint + "." + param->name_hint, true);
  }

  for (const auto &kv : buffer_def) {
    binder.BindDLTensor(kv.second, device_type, device_id, kv.first,
                        name_hint + "." + kv.first->name_hint);
    arg_buffer_declarations.push_back(DeclBuffer(kv.second, nop));
  }

  func =
      WithAttrs(std::move(func),
                {{tvm::attr::kCallingConv, Integer(CallingConv::kCPackedFunc)},
                 {tvm::attr::kTarget, target_host}});
  Stmt body = RewriteReturn(func_ptr->body, v_out_ret_value, v_out_ret_tcode);
  body = AttrStmt(make_zero(DataType::Int(32)), tir::attr::compute_scope,
                  StringImm(name_hint + "_compute_"), body);
  // Set device context
  if (vmap.count(device_id.get())) {
    ObjectRef node = String("default");
    seq_check.push_back(AttrStmt(node, tir::attr::device_id, device_id, nop));
    seq_check.push_back(
        AttrStmt(node, tir::attr::device_type, device_type, nop));

414
    if (runtime::DeviceAPI::NeedSetDevice(target_device_type)) {
415
416
417
418
419
420
421
422
      Stmt set_device =
          Evaluate(Call(DataType::Int(32), builtin::tvm_call_packed(),
                        {StringImm(runtime::symbol::tvm_set_device),
                         device_type, device_id}));
      body = SeqStmt({set_device, body});
    }
  }

423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
  // (zhengju) For dynamic constraint, we need to check the buffer shape and
  // dtype to make sure the buffer can be vectorized.
  for (const auto &kv : buffer_def) {
    if (disable_dynamic_tail_split) {
      Optional<Integer> opt_dynamic_alignment =
          ctxt->GetConfig(kDynamicAlignment, Optional<Integer>());
      int dynamic_alignment = opt_dynamic_alignment.value_or(Integer(8))->value;
      // The vectorize dimension will be the last dimension of the buffer
      auto vectorize_dim = kv.second->shape[kv.second->shape.size() - 1];
      auto shape_vectorize_expr = [&]() -> PrimExpr {
        PrimExpr result = IntImm(kv.second->DefaultIndexType(), 1);
        result = result * vectorize_dim;
        result = FloorMod(result, dynamic_alignment);
        return result;
      }();
      shape_checks.emplace_back(AssertStmt(
          shape_vectorize_expr == 0,
          tvm::tir::StringImm(
              kv.second->name +
              ": Vectorize dimension in buffer must be divisible by " +
              std::to_string(dynamic_alignment)),
          nop));
    }
  }

448
449
450
  // Return error code of zero on success
  body = SeqStmt({body, Evaluate(ret(Integer(0)))});

451
452
453
454
455
456
457
458
459
460
  if (!disable_dynamic_tail_split) {
    body = MergeNest({seq_init, binder.init_nest(), seq_check, binder.asserts(),
                      arg_buffer_declarations},
                     body);
  } else {
    body = MergeNest({seq_init, binder.init_nest(), seq_check, binder.asserts(),
                      arg_buffer_declarations, shape_checks},
                     body);
  }

461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
  func_ptr->body = body;
  func_ptr->params = args;

  Array<Var> undefined = UndefinedVars(func_ptr->body, func_ptr->params);
  ICHECK_EQ(undefined.size(), 0)
      << "In PrimFunc " << name_hint << " variables " << undefined
      << " are used, but are not passed in as API arguments";

  func_ptr->buffer_map = Map<Var, Buffer>();
  func_ptr->ret_type = PrimType(DataType::Int(32)); // return the function.
  return func;
}

tvm::transform::Pass MakePackedAPI() {
  using tvm::transform::Pass;
476
  auto pass_func = [](IRModule mod, const tvm::transform::PassContext &ctx) {
477
478
479
    Map<GlobalVar, String> packed_func_methods;
    for (const auto &[gvar, base_func] : mod->functions) {
      if (auto opt = base_func.as<PrimFunc>()) {
480
        const auto &prim_func = opt.value();
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
        if (auto global_symbol = RequiresPackedAPI(prim_func)) {
          packed_func_methods.Set(gvar, global_symbol.value());
        }
      }
    }

    IRModuleNode *mptr = mod.CopyOnWrite();
    IRModule updates;

    for (const auto &[gvar, base_func] : mptr->functions) {
      if (auto opt = base_func.as<PrimFunc>()) {
        auto func = opt.value();
        auto orig_func = func;

        if (auto body = SubroutineCallRewriter::Apply(packed_func_methods,
                                                      func->body)) {
          func.CopyOnWrite()->body = body.value();
        }
        func = MakePackedAPI(std::move(func));

        if (!func.same_as(orig_func)) {
          updates->Add(gvar, func);
        }
      }
    }

507
    if (!updates->functions.empty()) {
508
509
510
511
512
513
514
515
      mod.CopyOnWrite()->Update(updates);
    }
    return mod;
  };

  return tvm::transform::CreateModulePass(pass_func, 0, "tl.MakePackedAPI", {});
}

516
517
518
519
TVM_FFI_STATIC_INIT_BLOCK({
  namespace refl = tvm::ffi::reflection;
  refl::GlobalDef().def("tl.transform.MakePackedAPI",
                        []() { return MakePackedAPI(); });
520
521
522
523
});

} // namespace tl
} // namespace tvm