benchmark_mla.py 20.8 KB
Newer Older
1
# This benchmark script is modified based on: https://github.com/deepseek-ai/FlashMLA/blob/main/benchmark/bench_flash_mla.py
2
# ruff: noqa
3
4
5
6
7
8
9
10
11
12
13
import argparse
import math
import random
import torch
import triton
import triton.language as tl

import tilelang
from tilelang.profiler import do_bench
from example_mla_decode_paged import mla_decode_tilelang

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
def scaled_dot_product_attention(query, key, value, h_q, h_kv, is_causal=False):
    query = query.float()
    key = key.float()
    value = value.float()
    key = key.repeat_interleave(h_q // h_kv, dim=0)
    value = value.repeat_interleave(h_q // h_kv, dim=0)
    attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
    if is_causal:
        s_q = query.shape[-2]
        s_k = key.shape[-2]
        attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype)
        temp_mask = torch.ones(s_q, s_k, dtype=torch.bool).tril(diagonal=s_k - s_q)
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)
        attn_weight += attn_bias
    lse = attn_weight.logsumexp(dim=-1)
    attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
    return attn_weight @ value, lse


@torch.inference_mode()
36
37
def run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
                  h_kv, d, dv, causal, dtype):
38
39
40
41
42
43
44
45
46
47
48
49
    blocked_v = blocked_k[..., :dv]

    def ref_mla():
        out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32)
        lse = torch.empty(b, h_q, s_q, dtype=torch.float32)
        for i in range(b):
            begin = i * max_seqlen_pad
            end = begin + cache_seqlens[i]
            O, LSE = scaled_dot_product_attention(
                q[i].transpose(0, 1),
                blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
                blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
50
51
                h_q,
                h_kv,
52
53
54
55
56
57
58
59
60
61
                is_causal=causal,
            )
            out[i] = O.transpose(0, 1)
            lse[i] = LSE
        return out, lse

    out_torch, lse_torch = ref_mla()
    t = triton.testing.do_bench(ref_mla)
    return out_torch, lse_torch, t

62

63
@torch.inference_mode()
64
65
def run_flash_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
                  h_kv, d, dv, causal, dtype):
66
67
    from flash_mla import flash_mla_with_kvcache, get_mla_metadata

68
69
70
71
72
73
    blocked_v = blocked_k[..., :dv]

    tile_scheduler_metadata, num_splits = get_mla_metadata(cache_seqlens, s_q * h_q // h_kv, h_kv)

    def flash_mla():
        return flash_mla_with_kvcache(
74
75
76
77
78
79
80
81
            q,
            blocked_k,
            block_table,
            cache_seqlens,
            dv,
            tile_scheduler_metadata,
            num_splits,
            causal=causal,
82
83
84
85
86
87
88
89
        )

    out_flash, lse_flash = flash_mla()
    t = triton.testing.do_bench(flash_mla)
    return out_flash, lse_flash, t


@torch.inference_mode()
90
91
def run_flashinfer(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens,
                   h_q, h_kv, d, dv, causal, dtype):
92
93
    # pip install flashinfer-python
    import flashinfer
94
95
    assert d > dv, "mla with rope dim should be larger than no rope dim"
    q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
96
97
98
    blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
                                                                               dv:].contiguous()

99
100
101
102
103
104
105
106
107
108
    kv_indptr = [0]
    kv_indices = []
    for i in range(b):
        seq_len = cache_seqlens[i]
        assert seq_len > 0
        num_blocks = (seq_len + block_size - 1) // block_size
        kv_indices.extend(block_table[i, :num_blocks])
        kv_indptr.append(kv_indptr[-1] + num_blocks)
    for seq_len in cache_seqlens[1:]:
        kv_indptr.append((seq_len + block_size - 1) // block_size + kv_indptr[-1])
109

110
111
112
113
114
    q_indptr = torch.arange(0, b + 1).int() * s_q
    kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
    kv_indices = torch.tensor(kv_indices, dtype=torch.int32)

    mla_wrapper = flashinfer.mla.BatchMLAPagedAttentionWrapper(
115
        torch.empty(128 * 1024 * 1024, dtype=torch.int8), backend="fa3")
116
117
118
119
120
121
122
    mla_wrapper.plan(
        q_indptr,
        kv_indptr,
        kv_indices,
        cache_seqlens,
        h_q,
        dv,
123
        d - dv,
124
125
126
127
128
129
130
        block_size,
        causal,
        1 / math.sqrt(d),
        q.dtype,
        blocked_k.dtype,
    )

131
    def flashinfer():
132
133
134
135
136
137
        output, lse = mla_wrapper.run(
            q_nope.view(-1, h_q, dv),
            q_pe.view(-1, h_q, d - dv),
            blocked_k_nope,
            blocked_k_pe,
            return_lse=True)
138
139
        return output.view(b, -1, h_q, dv), lse.view(b, h_q, 1)

140
141
    out_flash, lse_flash = flashinfer()
    t = triton.testing.do_bench(flashinfer)
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    return out_flash, lse_flash, t


@triton.jit
def _mla_attn_kernel(
    Q_nope,
    Q_pe,
    Kv_c_cache,
    K_pe_cache,
    Req_to_tokens,
    B_seq_len,
    O,
    sm_scale,
    stride_q_nope_bs,
    stride_q_nope_h,
    stride_q_pe_bs,
    stride_q_pe_h,
    stride_kv_c_bs,
    stride_k_pe_bs,
    stride_req_to_tokens_bs,
    stride_o_b,
    stride_o_h,
    stride_o_s,
    BLOCK_H: tl.constexpr,
    BLOCK_N: tl.constexpr,
    NUM_KV_SPLITS: tl.constexpr,
    PAGE_SIZE: tl.constexpr,
    HEAD_DIM_CKV: tl.constexpr,
    HEAD_DIM_KPE: tl.constexpr,
):
    cur_batch = tl.program_id(1)
    cur_head_id = tl.program_id(0)
    split_kv_id = tl.program_id(2)

    cur_batch_seq_len = tl.load(B_seq_len + cur_batch)

    offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)
    cur_head = cur_head_id * BLOCK_H + tl.arange(0, BLOCK_H)
180
181
    offs_q_nope = cur_batch * stride_q_nope_bs + cur_head[:, None] * stride_q_nope_h + offs_d_ckv[
        None, :]
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    q_nope = tl.load(Q_nope + offs_q_nope)

    offs_d_kpe = tl.arange(0, HEAD_DIM_KPE)
    offs_q_pe = cur_batch * stride_q_pe_bs + cur_head[:, None] * stride_q_pe_h + offs_d_kpe[None, :]
    q_pe = tl.load(Q_pe + offs_q_pe)

    e_max = tl.zeros([BLOCK_H], dtype=tl.float32) - float("inf")
    e_sum = tl.zeros([BLOCK_H], dtype=tl.float32)
    acc = tl.zeros([BLOCK_H, HEAD_DIM_CKV], dtype=tl.float32)

    kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
    split_kv_start = kv_len_per_split * split_kv_id
    split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)

    for start_n in range(split_kv_start, split_kv_end, BLOCK_N):
        offs_n = start_n + tl.arange(0, BLOCK_N)
        kv_page_number = tl.load(
            Req_to_tokens + stride_req_to_tokens_bs * cur_batch + offs_n // PAGE_SIZE,
            mask=offs_n < split_kv_end,
            other=0,
        )
        kv_loc = kv_page_number * PAGE_SIZE + offs_n % PAGE_SIZE
        offs_k_c = kv_loc[None, :] * stride_kv_c_bs + offs_d_ckv[:, None]
        k_c = tl.load(Kv_c_cache + offs_k_c, mask=offs_n[None, :] < split_kv_end, other=0.0)

        qk = tl.dot(q_nope, k_c.to(q_nope.dtype))

        offs_k_pe = kv_loc[None, :] * stride_k_pe_bs + offs_d_kpe[:, None]
        k_pe = tl.load(K_pe_cache + offs_k_pe, mask=offs_n[None, :] < split_kv_end, other=0.0)

        qk += tl.dot(q_pe, k_pe.to(q_pe.dtype))
        qk *= sm_scale

        qk = tl.where(offs_n[None, :] < split_kv_end, qk, float("-inf"))

        v_c = tl.trans(k_c)

        n_e_max = tl.maximum(tl.max(qk, 1), e_max)
        re_scale = tl.exp(e_max - n_e_max)
        p = tl.exp(qk - n_e_max[:, None])
        acc *= re_scale[:, None]
        acc += tl.dot(p.to(v_c.dtype), v_c)

        e_sum = e_sum * re_scale + tl.sum(p, 1)
        e_max = n_e_max
227
228
229
    offs_o = cur_batch * stride_o_b + cur_head[:,
                                               None] * stride_o_h + split_kv_id * stride_o_s + offs_d_ckv[
                                                   None, :]
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    tl.store(O + offs_o, acc / e_sum[:, None])
    offs_o_1 = cur_batch * stride_o_b + cur_head * stride_o_h + split_kv_id * stride_o_s + HEAD_DIM_CKV
    tl.store(O + offs_o_1, e_max + tl.log(e_sum))


def _mla_attn(
    q_nope,
    q_pe,
    kv_c_cache,
    k_pe_cache,
    attn_logits,
    req_to_tokens,
    b_seq_len,
    num_kv_splits,
    sm_scale,
    page_size,
):
    batch_size, head_num = q_nope.shape[0], q_nope.shape[1]
    head_dim_ckv = q_nope.shape[-1]
    head_dim_kpe = q_pe.shape[-1]

    BLOCK_H = 16
    BLOCK_N = 64
    grid = (
        triton.cdiv(head_num, BLOCK_H),
        batch_size,
        num_kv_splits,
    )
    _mla_attn_kernel[grid](
        q_nope,
        q_pe,
        kv_c_cache,
        k_pe_cache,
        req_to_tokens,
        b_seq_len,
        attn_logits,
        sm_scale,
        # stride
        q_nope.stride(0),
        q_nope.stride(1),
        q_pe.stride(0),
        q_pe.stride(1),
        kv_c_cache.stride(-2),
        k_pe_cache.stride(-2),
        req_to_tokens.stride(0),
        attn_logits.stride(0),
        attn_logits.stride(1),
        attn_logits.stride(2),
        BLOCK_H=BLOCK_H,
279
        BLOCK_N=BLOCK_N,
280
281
282
283
284
285
        NUM_KV_SPLITS=num_kv_splits,
        PAGE_SIZE=page_size,
        HEAD_DIM_CKV=head_dim_ckv,
        HEAD_DIM_KPE=head_dim_kpe,
    )

286

287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
@triton.jit
def _mla_softmax_reducev_kernel(
    Logits,
    B_seq_len,
    O,
    stride_l_b,
    stride_l_h,
    stride_l_s,
    stride_o_b,
    stride_o_h,
    NUM_KV_SPLITS: tl.constexpr,
    HEAD_DIM_CKV: tl.constexpr,
):
    cur_batch = tl.program_id(0)
    cur_head = tl.program_id(1)
    cur_batch_seq_len = tl.load(B_seq_len + cur_batch)

    offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)

    e_sum = 0.0
    e_max = -float("inf")
    acc = tl.zeros([HEAD_DIM_CKV], dtype=tl.float32)

    offs_l = cur_batch * stride_l_b + cur_head * stride_l_h + offs_d_ckv
    offs_l_1 = cur_batch * stride_l_b + cur_head * stride_l_h + HEAD_DIM_CKV

    for split_kv_id in range(0, NUM_KV_SPLITS):
        kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
        split_kv_start = kv_len_per_split * split_kv_id
        split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)

        if split_kv_end > split_kv_start:
            logits = tl.load(Logits + offs_l + split_kv_id * stride_l_s)
            logits_1 = tl.load(Logits + offs_l_1 + split_kv_id * stride_l_s)

            n_e_max = tl.maximum(logits_1, e_max)
            old_scale = tl.exp(e_max - n_e_max)
            acc *= old_scale
            exp_logic = tl.exp(logits_1 - n_e_max)
            acc += exp_logic * logits

            e_sum = e_sum * old_scale + exp_logic
            e_max = n_e_max
330

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
    tl.store(
        O + cur_batch * stride_o_b + cur_head * stride_o_h + offs_d_ckv,
        acc / e_sum,
    )


def _mla_softmax_reducev(
    logits,
    o,
    b_seq_len,
    num_kv_splits,
):
    batch_size, head_num, head_dim_ckv = o.shape[0], o.shape[1], o.shape[2]
    grid = (batch_size, head_num)
    _mla_softmax_reducev_kernel[grid](
        logits,
        b_seq_len,
        o,
        logits.stride(0),
        logits.stride(1),
        logits.stride(2),
        o.stride(0),
        o.stride(1),
        NUM_KV_SPLITS=num_kv_splits,
        HEAD_DIM_CKV=head_dim_ckv,
        num_warps=4,
        num_stages=2,
    )

360

361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
def mla_decode_triton(
    q_nope,
    q_pe,
    kv_c_cache,
    k_pe_cache,
    o,
    req_to_tokens,
    b_seq_len,
    attn_logits,
    num_kv_splits,
    sm_scale,
    page_size,
):
    assert num_kv_splits == attn_logits.shape[2]
    _mla_attn(
        q_nope,
        q_pe,
        kv_c_cache,
        k_pe_cache,
        attn_logits,
        req_to_tokens,
        b_seq_len,
        num_kv_splits,
        sm_scale,
        page_size,
    )
    _mla_softmax_reducev(
        attn_logits,
        o,
        b_seq_len,
        num_kv_splits,
    )
393

394
395

@torch.inference_mode()
396
397
398
def run_flash_mla_triton(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
                         cache_seqlens, h_q, h_kv, d, dv, causal, dtype):

399
    blocked_v = blocked_k[..., :dv]
400

401
402
    assert d > dv, "mla with rope dim should be larger than no rope dim"
    q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
403
404
    blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
                                                                               dv:].contiguous()
405
406
407
408
409

    def flash_mla_triton():
        num_kv_splits = 32
        o = torch.empty([b * s_q, h_q, dv])
        attn_logits = torch.empty([b * s_q, h_q, num_kv_splits, dv + 1])
410
411
412
413
        mla_decode_triton(
            q_nope.view(-1, h_q, dv), q_pe.view(-1, h_q, d - dv), blocked_k_nope.view(-1, dv),
            blocked_k_pe.view(-1, d - dv), o, block_table, cache_seqlens, attn_logits,
            num_kv_splits, 1 / math.sqrt(d), block_size)
414
415
416
417
418
419
420
421
        return o.view([b, s_q, h_q, dv])

    out_flash = flash_mla_triton()
    t = triton.testing.do_bench(flash_mla_triton)
    return out_flash, None, t


@torch.inference_mode()
422
423
424
def run_flash_mla_tilelang(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
                           cache_seqlens, h_q, h_kv, d, dv, causal, dtype):

425
426
    assert d > dv, "mla with rope dim should be larger than no rope dim"
    q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
427
428
    blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
                                                                               dv:].contiguous()
429
430
431
432
433

    dpe = d - dv
    num_kv_splits = 1
    BLOCK_N = 64
    BLOCK_H = 64
434

435
436
    out_partial = torch.empty(b, h_q, num_kv_splits, dv, dtype=dtype, device=q.device)
    glse = torch.empty(b, h_q, num_kv_splits, dtype=dtype, device=q.device)
437
438
    kernel = mla_decode_tilelang(b, h_q, h_kv, max_seqlen_pad, dv, dpe, BLOCK_N, BLOCK_H,
                                 num_kv_splits, block_size)
439
440

    def flash_mla_tilelang():
441
        out = kernel(
442
443
444
445
446
            q_nope.view(-1, h_q, dv),
            q_pe.view(-1, h_q, dpe),
            blocked_k_nope.view(-1, h_kv, dv),
            blocked_k_pe.view(-1, h_kv, dpe),
            block_table,
447
448
449
450
451
452
453
454
455
456
            cache_seqlens,
            glse,
            out_partial,
        )
        return out.view([b, s_q, h_q, dv])

    out_flash = flash_mla_tilelang()
    t = do_bench(flash_mla_tilelang)
    return out_flash, None, t

457

458
459
460
461
FUNC_TABLE = {
    "torch": run_torch_mla,
    "tilelang": run_flash_mla_tilelang,
    "flash_mla": run_flash_mla,
462
    "flashinfer": run_flashinfer,
463
464
    "flash_mla_triton": run_flash_mla_triton,
}
465
466


467
def compare_ab(baseline, target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
468
469
470
    print(
        f"comparing {baseline} vs {target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}"
    )
471
472
473
474
475
476
477
478
479
480
    device = torch.device("cuda:0")
    torch.set_default_dtype(dtype)
    torch.set_default_device(device)
    torch.cuda.set_device(device)
    torch.manual_seed(0)
    random.seed(0)
    assert baseline in FUNC_TABLE
    assert target in FUNC_TABLE
    baseline_func = FUNC_TABLE[baseline]
    target_func = FUNC_TABLE[target]
481

482
483
484
485
486
487
488
    total_seqlens = cache_seqlens.sum().item()
    max_seqlen = cache_seqlens.max().item()
    max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
    # print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")

    q = torch.randn(b, s_q, h_q, d)
    block_size = 64
489
490
    block_table = torch.arange(
        b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
491
    blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
492
493
494
495
496
497

    out_a, lse_a, perf_a = baseline_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
                                         s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
    out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
                                       s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)

498
    torch.testing.assert_close(out_b.float(), out_a.float(), atol=1e-2, rtol=1e-2), "out"
499
500
501
    if target not in ["flashinfer", "flash_mla_triton", "tilelang"
                     ] and baseline not in ["flashinfer", "flash_mla_triton", "tilelang"]:
        # flashinfer has a different lse return value
502
503
504
505
        # flash_mla_triton and flash_mla_tilelang doesn't return lse
        torch.testing.assert_close(lse_b.float(), lse_a.float(), atol=1e-2, rtol=1e-2), "lse"

    FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
506
507
508
509
510
511
512
513
514
    bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
        torch.finfo(dtype).bits // 8)
    print(
        f"perf {baseline}: {perf_a:.3f} ms, {FLOPS / 10 ** 9 / perf_a:.0f} TFLOPS, {bytes / 10 ** 6 / perf_a:.0f} GB/s"
    )
    print(
        f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s"
    )
    return bytes / 10**6 / perf_a, bytes / 10**6 / perf_b
515
516
517


def compare_a(target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
518
519
520
    print(
        f"{target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}"
    )
521
522
523
524
525
526
527
528
    torch.set_default_dtype(dtype)
    device = torch.device("cuda:0")
    torch.set_default_device(device)
    torch.cuda.set_device(device)
    torch.manual_seed(0)
    random.seed(0)
    assert target in FUNC_TABLE
    target_func = FUNC_TABLE[target]
529

530
531
532
533
534
535
536
    total_seqlens = cache_seqlens.sum().item()
    max_seqlen = cache_seqlens.max().item()
    max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
    # print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")

    q = torch.randn(b, s_q, h_q, d)
    block_size = 64
537
538
    block_table = torch.arange(
        b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
539
    blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
540
541
542

    out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
                                       s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
543
544

    FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
545
546
547
548
549
550
    bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
        torch.finfo(dtype).bits // 8)
    print(
        f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s"
    )
    return bytes / 10**6 / perf_b
551
552
553
554
555
556


available_targets = [
    "torch",
    "tilelang",
    "flash_mla",
557
    "flashinfer",
558
559
560
    "flash_mla_triton",
]

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
shape_configs = [{
    "b":
        batch,
    "s_q":
        1,
    "cache_seqlens":
        torch.tensor([seqlen + 2 * i for i in range(batch)], dtype=torch.int32, device="cuda"),
    "h_q":
        head,
    "h_kv":
        1,
    "d":
        512 + 64,
    "dv":
        512,
    "causal":
        True,
    "dtype":
        torch.float16
} for batch in [128] for seqlen in [1024, 2048, 4096, 8192, 16384, 32768] for head in [128]]
581
582
583
584
585
586
587
588
589
590
591
592


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--baseline", type=str, default="torch")
    parser.add_argument("--target", type=str, default="tilelang")
    parser.add_argument("--all", action="store_true")
    parser.add_argument("--one", action="store_true")
    parser.add_argument("--compare", action="store_true")
    args = parser.parse_args()
    return args

593

594
595
596
597
598
599
600
601
if __name__ == "__main__":
    args = get_args()
    benchmark_type = "all" if args.all else f"{args.baseline}_vs_{args.target}" if args.compare else args.target
    with open(f"{benchmark_type}_perf.csv", "w") as fout:
        fout.write("name,batch,seqlen,head,bw\n")
        for shape in shape_configs:
            if args.all:
                for target in available_targets:
602
603
604
605
606
607
                    perf = compare_a(target, shape["b"], shape["s_q"], shape["cache_seqlens"],
                                     shape["h_q"], shape["h_kv"], shape["d"], shape["dv"],
                                     shape["causal"], shape["dtype"])
                    fout.write(
                        f'{target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n'
                    )
608
            elif args.compare:
609
610
611
612
613
614
615
616
617
                perfa, prefb = compare_ab(args.baseline, args.target, shape["b"], shape["s_q"],
                                          shape["cache_seqlens"], shape["h_q"], shape["h_kv"],
                                          shape["d"], shape["dv"], shape["causal"], shape["dtype"])
                fout.write(
                    f'{args.baseline},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perfa:.0f}\n'
                )
                fout.write(
                    f'{args.target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{prefb:.0f}\n'
                )
618
            elif args.one:
619
620
621
622
623
624
                perf = compare_a(args.target, shape["b"], shape["s_q"], shape["cache_seqlens"],
                                 shape["h_q"], shape["h_kv"], shape["d"], shape["dv"],
                                 shape["causal"], shape["dtype"])
                fout.write(
                    f'{args.target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n'
                )