benchmark_mla.py 20.8 KB
Newer Older
1
# This benchmark script is modified based on: https://github.com/deepseek-ai/FlashMLA/blob/main/benchmark/bench_flash_mla.py
2
# ruff: noqa
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
import argparse
import math
import random

import flashinfer
import torch
import triton
import triton.language as tl

# pip install flashinfer-python
from flash_mla import flash_mla_with_kvcache, get_mla_metadata

import tilelang
from tilelang.profiler import do_bench
from example_mla_decode_paged import mla_decode_tilelang

19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
def scaled_dot_product_attention(query, key, value, h_q, h_kv, is_causal=False):
    query = query.float()
    key = key.float()
    value = value.float()
    key = key.repeat_interleave(h_q // h_kv, dim=0)
    value = value.repeat_interleave(h_q // h_kv, dim=0)
    attn_weight = query @ key.transpose(-2, -1) / math.sqrt(query.size(-1))
    if is_causal:
        s_q = query.shape[-2]
        s_k = key.shape[-2]
        attn_bias = torch.zeros(s_q, s_k, dtype=query.dtype)
        temp_mask = torch.ones(s_q, s_k, dtype=torch.bool).tril(diagonal=s_k - s_q)
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)
        attn_weight += attn_bias
    lse = attn_weight.logsumexp(dim=-1)
    attn_weight = torch.softmax(attn_weight, dim=-1, dtype=torch.float32)
    return attn_weight @ value, lse


@torch.inference_mode()
41
42
def run_torch_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
                  h_kv, d, dv, causal, dtype):
43
44
45
46
47
48
49
50
51
52
53
54
    blocked_v = blocked_k[..., :dv]

    def ref_mla():
        out = torch.empty(b, s_q, h_q, dv, dtype=torch.float32)
        lse = torch.empty(b, h_q, s_q, dtype=torch.float32)
        for i in range(b):
            begin = i * max_seqlen_pad
            end = begin + cache_seqlens[i]
            O, LSE = scaled_dot_product_attention(
                q[i].transpose(0, 1),
                blocked_k.view(-1, h_kv, d)[begin:end].transpose(0, 1),
                blocked_v.view(-1, h_kv, dv)[begin:end].transpose(0, 1),
55
56
                h_q,
                h_kv,
57
58
59
60
61
62
63
64
65
66
                is_causal=causal,
            )
            out[i] = O.transpose(0, 1)
            lse[i] = LSE
        return out, lse

    out_torch, lse_torch = ref_mla()
    t = triton.testing.do_bench(ref_mla)
    return out_torch, lse_torch, t

67

68
@torch.inference_mode()
69
70
def run_flash_mla(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens, h_q,
                  h_kv, d, dv, causal, dtype):
71
72
73
74
75
76
    blocked_v = blocked_k[..., :dv]

    tile_scheduler_metadata, num_splits = get_mla_metadata(cache_seqlens, s_q * h_q // h_kv, h_kv)

    def flash_mla():
        return flash_mla_with_kvcache(
77
78
79
80
81
82
83
84
            q,
            blocked_k,
            block_table,
            cache_seqlens,
            dv,
            tile_scheduler_metadata,
            num_splits,
            causal=causal,
85
86
87
88
89
90
91
92
        )

    out_flash, lse_flash = flash_mla()
    t = triton.testing.do_bench(flash_mla)
    return out_flash, lse_flash, t


@torch.inference_mode()
93
94
95
def run_flash_infer(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q, cache_seqlens,
                    h_q, h_kv, d, dv, causal, dtype):

96
97
    assert d > dv, "mla with rope dim should be larger than no rope dim"
    q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
98
99
100
    blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
                                                                               dv:].contiguous()

101
102
103
104
105
106
107
108
109
110
    kv_indptr = [0]
    kv_indices = []
    for i in range(b):
        seq_len = cache_seqlens[i]
        assert seq_len > 0
        num_blocks = (seq_len + block_size - 1) // block_size
        kv_indices.extend(block_table[i, :num_blocks])
        kv_indptr.append(kv_indptr[-1] + num_blocks)
    for seq_len in cache_seqlens[1:]:
        kv_indptr.append((seq_len + block_size - 1) // block_size + kv_indptr[-1])
111

112
113
114
115
116
    q_indptr = torch.arange(0, b + 1).int() * s_q
    kv_indptr = torch.tensor(kv_indptr, dtype=torch.int32)
    kv_indices = torch.tensor(kv_indices, dtype=torch.int32)

    mla_wrapper = flashinfer.mla.BatchMLAPagedAttentionWrapper(
117
        torch.empty(128 * 1024 * 1024, dtype=torch.int8), backend="fa3")
118
119
120
121
122
123
124
    mla_wrapper.plan(
        q_indptr,
        kv_indptr,
        kv_indices,
        cache_seqlens,
        h_q,
        dv,
125
        d - dv,
126
127
128
129
130
131
132
133
        block_size,
        causal,
        1 / math.sqrt(d),
        q.dtype,
        blocked_k.dtype,
    )

    def flash_infer():
134
135
136
137
138
139
        output, lse = mla_wrapper.run(
            q_nope.view(-1, h_q, dv),
            q_pe.view(-1, h_q, d - dv),
            blocked_k_nope,
            blocked_k_pe,
            return_lse=True)
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
        return output.view(b, -1, h_q, dv), lse.view(b, h_q, 1)

    out_flash, lse_flash = flash_infer()
    t = triton.testing.do_bench(flash_infer)
    return out_flash, lse_flash, t


@triton.jit
def _mla_attn_kernel(
    Q_nope,
    Q_pe,
    Kv_c_cache,
    K_pe_cache,
    Req_to_tokens,
    B_seq_len,
    O,
    sm_scale,
    stride_q_nope_bs,
    stride_q_nope_h,
    stride_q_pe_bs,
    stride_q_pe_h,
    stride_kv_c_bs,
    stride_k_pe_bs,
    stride_req_to_tokens_bs,
    stride_o_b,
    stride_o_h,
    stride_o_s,
    BLOCK_H: tl.constexpr,
    BLOCK_N: tl.constexpr,
    NUM_KV_SPLITS: tl.constexpr,
    PAGE_SIZE: tl.constexpr,
    HEAD_DIM_CKV: tl.constexpr,
    HEAD_DIM_KPE: tl.constexpr,
):
    cur_batch = tl.program_id(1)
    cur_head_id = tl.program_id(0)
    split_kv_id = tl.program_id(2)

    cur_batch_seq_len = tl.load(B_seq_len + cur_batch)

    offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)
    cur_head = cur_head_id * BLOCK_H + tl.arange(0, BLOCK_H)
182
183
    offs_q_nope = cur_batch * stride_q_nope_bs + cur_head[:, None] * stride_q_nope_h + offs_d_ckv[
        None, :]
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
    q_nope = tl.load(Q_nope + offs_q_nope)

    offs_d_kpe = tl.arange(0, HEAD_DIM_KPE)
    offs_q_pe = cur_batch * stride_q_pe_bs + cur_head[:, None] * stride_q_pe_h + offs_d_kpe[None, :]
    q_pe = tl.load(Q_pe + offs_q_pe)

    e_max = tl.zeros([BLOCK_H], dtype=tl.float32) - float("inf")
    e_sum = tl.zeros([BLOCK_H], dtype=tl.float32)
    acc = tl.zeros([BLOCK_H, HEAD_DIM_CKV], dtype=tl.float32)

    kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
    split_kv_start = kv_len_per_split * split_kv_id
    split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)

    for start_n in range(split_kv_start, split_kv_end, BLOCK_N):
        offs_n = start_n + tl.arange(0, BLOCK_N)
        kv_page_number = tl.load(
            Req_to_tokens + stride_req_to_tokens_bs * cur_batch + offs_n // PAGE_SIZE,
            mask=offs_n < split_kv_end,
            other=0,
        )
        kv_loc = kv_page_number * PAGE_SIZE + offs_n % PAGE_SIZE
        offs_k_c = kv_loc[None, :] * stride_kv_c_bs + offs_d_ckv[:, None]
        k_c = tl.load(Kv_c_cache + offs_k_c, mask=offs_n[None, :] < split_kv_end, other=0.0)

        qk = tl.dot(q_nope, k_c.to(q_nope.dtype))

        offs_k_pe = kv_loc[None, :] * stride_k_pe_bs + offs_d_kpe[:, None]
        k_pe = tl.load(K_pe_cache + offs_k_pe, mask=offs_n[None, :] < split_kv_end, other=0.0)

        qk += tl.dot(q_pe, k_pe.to(q_pe.dtype))
        qk *= sm_scale

        qk = tl.where(offs_n[None, :] < split_kv_end, qk, float("-inf"))

        v_c = tl.trans(k_c)

        n_e_max = tl.maximum(tl.max(qk, 1), e_max)
        re_scale = tl.exp(e_max - n_e_max)
        p = tl.exp(qk - n_e_max[:, None])
        acc *= re_scale[:, None]
        acc += tl.dot(p.to(v_c.dtype), v_c)

        e_sum = e_sum * re_scale + tl.sum(p, 1)
        e_max = n_e_max
229
230
231
    offs_o = cur_batch * stride_o_b + cur_head[:,
                                               None] * stride_o_h + split_kv_id * stride_o_s + offs_d_ckv[
                                                   None, :]
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    tl.store(O + offs_o, acc / e_sum[:, None])
    offs_o_1 = cur_batch * stride_o_b + cur_head * stride_o_h + split_kv_id * stride_o_s + HEAD_DIM_CKV
    tl.store(O + offs_o_1, e_max + tl.log(e_sum))


def _mla_attn(
    q_nope,
    q_pe,
    kv_c_cache,
    k_pe_cache,
    attn_logits,
    req_to_tokens,
    b_seq_len,
    num_kv_splits,
    sm_scale,
    page_size,
):
    batch_size, head_num = q_nope.shape[0], q_nope.shape[1]
    head_dim_ckv = q_nope.shape[-1]
    head_dim_kpe = q_pe.shape[-1]

    BLOCK_H = 16
    BLOCK_N = 64
    grid = (
        triton.cdiv(head_num, BLOCK_H),
        batch_size,
        num_kv_splits,
    )
    _mla_attn_kernel[grid](
        q_nope,
        q_pe,
        kv_c_cache,
        k_pe_cache,
        req_to_tokens,
        b_seq_len,
        attn_logits,
        sm_scale,
        # stride
        q_nope.stride(0),
        q_nope.stride(1),
        q_pe.stride(0),
        q_pe.stride(1),
        kv_c_cache.stride(-2),
        k_pe_cache.stride(-2),
        req_to_tokens.stride(0),
        attn_logits.stride(0),
        attn_logits.stride(1),
        attn_logits.stride(2),
        BLOCK_H=BLOCK_H,
281
        BLOCK_N=BLOCK_N,
282
283
284
285
286
287
        NUM_KV_SPLITS=num_kv_splits,
        PAGE_SIZE=page_size,
        HEAD_DIM_CKV=head_dim_ckv,
        HEAD_DIM_KPE=head_dim_kpe,
    )

288

289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
@triton.jit
def _mla_softmax_reducev_kernel(
    Logits,
    B_seq_len,
    O,
    stride_l_b,
    stride_l_h,
    stride_l_s,
    stride_o_b,
    stride_o_h,
    NUM_KV_SPLITS: tl.constexpr,
    HEAD_DIM_CKV: tl.constexpr,
):
    cur_batch = tl.program_id(0)
    cur_head = tl.program_id(1)
    cur_batch_seq_len = tl.load(B_seq_len + cur_batch)

    offs_d_ckv = tl.arange(0, HEAD_DIM_CKV)

    e_sum = 0.0
    e_max = -float("inf")
    acc = tl.zeros([HEAD_DIM_CKV], dtype=tl.float32)

    offs_l = cur_batch * stride_l_b + cur_head * stride_l_h + offs_d_ckv
    offs_l_1 = cur_batch * stride_l_b + cur_head * stride_l_h + HEAD_DIM_CKV

    for split_kv_id in range(0, NUM_KV_SPLITS):
        kv_len_per_split = tl.cdiv(cur_batch_seq_len, NUM_KV_SPLITS)
        split_kv_start = kv_len_per_split * split_kv_id
        split_kv_end = tl.minimum(split_kv_start + kv_len_per_split, cur_batch_seq_len)

        if split_kv_end > split_kv_start:
            logits = tl.load(Logits + offs_l + split_kv_id * stride_l_s)
            logits_1 = tl.load(Logits + offs_l_1 + split_kv_id * stride_l_s)

            n_e_max = tl.maximum(logits_1, e_max)
            old_scale = tl.exp(e_max - n_e_max)
            acc *= old_scale
            exp_logic = tl.exp(logits_1 - n_e_max)
            acc += exp_logic * logits

            e_sum = e_sum * old_scale + exp_logic
            e_max = n_e_max
332

333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    tl.store(
        O + cur_batch * stride_o_b + cur_head * stride_o_h + offs_d_ckv,
        acc / e_sum,
    )


def _mla_softmax_reducev(
    logits,
    o,
    b_seq_len,
    num_kv_splits,
):
    batch_size, head_num, head_dim_ckv = o.shape[0], o.shape[1], o.shape[2]
    grid = (batch_size, head_num)
    _mla_softmax_reducev_kernel[grid](
        logits,
        b_seq_len,
        o,
        logits.stride(0),
        logits.stride(1),
        logits.stride(2),
        o.stride(0),
        o.stride(1),
        NUM_KV_SPLITS=num_kv_splits,
        HEAD_DIM_CKV=head_dim_ckv,
        num_warps=4,
        num_stages=2,
    )

362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
def mla_decode_triton(
    q_nope,
    q_pe,
    kv_c_cache,
    k_pe_cache,
    o,
    req_to_tokens,
    b_seq_len,
    attn_logits,
    num_kv_splits,
    sm_scale,
    page_size,
):
    assert num_kv_splits == attn_logits.shape[2]
    _mla_attn(
        q_nope,
        q_pe,
        kv_c_cache,
        k_pe_cache,
        attn_logits,
        req_to_tokens,
        b_seq_len,
        num_kv_splits,
        sm_scale,
        page_size,
    )
    _mla_softmax_reducev(
        attn_logits,
        o,
        b_seq_len,
        num_kv_splits,
    )
395

396
397

@torch.inference_mode()
398
399
400
def run_flash_mla_triton(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
                         cache_seqlens, h_q, h_kv, d, dv, causal, dtype):

401
    blocked_v = blocked_k[..., :dv]
402

403
404
    assert d > dv, "mla with rope dim should be larger than no rope dim"
    q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
405
406
    blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
                                                                               dv:].contiguous()
407
408
409
410
411

    def flash_mla_triton():
        num_kv_splits = 32
        o = torch.empty([b * s_q, h_q, dv])
        attn_logits = torch.empty([b * s_q, h_q, num_kv_splits, dv + 1])
412
413
414
415
        mla_decode_triton(
            q_nope.view(-1, h_q, dv), q_pe.view(-1, h_q, d - dv), blocked_k_nope.view(-1, dv),
            blocked_k_pe.view(-1, d - dv), o, block_table, cache_seqlens, attn_logits,
            num_kv_splits, 1 / math.sqrt(d), block_size)
416
417
418
419
420
421
422
423
        return o.view([b, s_q, h_q, dv])

    out_flash = flash_mla_triton()
    t = triton.testing.do_bench(flash_mla_triton)
    return out_flash, None, t


@torch.inference_mode()
424
425
426
def run_flash_mla_tilelang(q, block_table, blocked_k, max_seqlen_pad, block_size, b, s_q,
                           cache_seqlens, h_q, h_kv, d, dv, causal, dtype):

427
428
    assert d > dv, "mla with rope dim should be larger than no rope dim"
    q_nope, q_pe = q[..., :dv].contiguous(), q[..., dv:].contiguous()
429
430
    blocked_k_nope, blocked_k_pe = blocked_k[..., :dv].contiguous(), blocked_k[...,
                                                                               dv:].contiguous()
431
432
433
434
435

    dpe = d - dv
    num_kv_splits = 1
    BLOCK_N = 64
    BLOCK_H = 64
436

437
438
    out_partial = torch.empty(b, h_q, num_kv_splits, dv, dtype=dtype, device=q.device)
    glse = torch.empty(b, h_q, num_kv_splits, dtype=dtype, device=q.device)
439
440
441
    program = mla_decode_tilelang(b, h_q, h_kv, max_seqlen_pad, dv, dpe, BLOCK_N, BLOCK_H,
                                  num_kv_splits, block_size)
    kernel = tilelang.compile(program, out_idx=[8])
442
443

    def flash_mla_tilelang():
444
445
446
447
448
449
        out = kernel.func(
            q_nope.view(-1, h_q, dv),
            q_pe.view(-1, h_q, dpe),
            blocked_k_nope.view(-1, h_kv, dv),
            blocked_k_pe.view(-1, h_kv, dpe),
            block_table,
450
451
452
453
454
455
456
457
458
459
            cache_seqlens,
            glse,
            out_partial,
        )
        return out.view([b, s_q, h_q, dv])

    out_flash = flash_mla_tilelang()
    t = do_bench(flash_mla_tilelang)
    return out_flash, None, t

460

461
462
463
464
465
466
467
FUNC_TABLE = {
    "torch": run_torch_mla,
    "tilelang": run_flash_mla_tilelang,
    "flash_mla": run_flash_mla,
    "flash_infer": run_flash_infer,
    "flash_mla_triton": run_flash_mla_triton,
}
468
469


470
def compare_ab(baseline, target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
471
472
473
    print(
        f"comparing {baseline} vs {target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}"
    )
474
475
476
477
478
479
480
481
482
483
    device = torch.device("cuda:0")
    torch.set_default_dtype(dtype)
    torch.set_default_device(device)
    torch.cuda.set_device(device)
    torch.manual_seed(0)
    random.seed(0)
    assert baseline in FUNC_TABLE
    assert target in FUNC_TABLE
    baseline_func = FUNC_TABLE[baseline]
    target_func = FUNC_TABLE[target]
484

485
486
487
488
489
490
491
    total_seqlens = cache_seqlens.sum().item()
    max_seqlen = cache_seqlens.max().item()
    max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
    # print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")

    q = torch.randn(b, s_q, h_q, d)
    block_size = 64
492
493
    block_table = torch.arange(
        b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
494
    blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
495
496
497
498
499
500

    out_a, lse_a, perf_a = baseline_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
                                         s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
    out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
                                       s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)

501
502
503
504
505
506
507
    torch.testing.assert_close(out_b.float(), out_a.float(), atol=1e-2, rtol=1e-2), "out"
    if target not in ["flash_infer", "flash_mla_triton", "flash_mla_tilelang"]:
        # flash_infer has a different lse return value
        # flash_mla_triton and flash_mla_tilelang doesn't return lse
        torch.testing.assert_close(lse_b.float(), lse_a.float(), atol=1e-2, rtol=1e-2), "lse"

    FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
508
509
510
511
512
513
514
515
516
    bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
        torch.finfo(dtype).bits // 8)
    print(
        f"perf {baseline}: {perf_a:.3f} ms, {FLOPS / 10 ** 9 / perf_a:.0f} TFLOPS, {bytes / 10 ** 6 / perf_a:.0f} GB/s"
    )
    print(
        f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s"
    )
    return bytes / 10**6 / perf_a, bytes / 10**6 / perf_b
517
518
519


def compare_a(target, b, s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype):
520
521
522
    print(
        f"{target}: {b=}, {s_q=}, mean_seqlens={cache_seqlens.float().mean()}, {h_q=}, {h_kv=}, {d=}, {dv=}, {causal=}, {dtype=}"
    )
523
524
525
526
527
528
529
530
    torch.set_default_dtype(dtype)
    device = torch.device("cuda:0")
    torch.set_default_device(device)
    torch.cuda.set_device(device)
    torch.manual_seed(0)
    random.seed(0)
    assert target in FUNC_TABLE
    target_func = FUNC_TABLE[target]
531

532
533
534
535
536
537
538
    total_seqlens = cache_seqlens.sum().item()
    max_seqlen = cache_seqlens.max().item()
    max_seqlen_pad = triton.cdiv(max_seqlen, 256) * 256
    # print(f"{total_seqlens=}, {mean_seqlens=}, {max_seqlen=}")

    q = torch.randn(b, s_q, h_q, d)
    block_size = 64
539
540
    block_table = torch.arange(
        b * max_seqlen_pad // block_size, dtype=torch.int32).view(b, max_seqlen_pad // block_size)
541
    blocked_k = torch.randn(block_table.numel(), block_size, h_kv, d)
542
543
544

    out_b, lse_b, perf_b = target_func(q, block_table, blocked_k, max_seqlen_pad, block_size, b,
                                       s_q, cache_seqlens, h_q, h_kv, d, dv, causal, dtype)
545
546

    FLOPS = s_q * total_seqlens * h_q * (d + dv) * 2
547
548
549
550
551
552
    bytes = (total_seqlens * h_kv * d + b * s_q * h_q * d + b * s_q * h_q * dv) * (
        torch.finfo(dtype).bits // 8)
    print(
        f"perf {target}: {perf_b:.3f} ms, {FLOPS / 10 ** 9 / perf_b:.0f} TFLOPS, {bytes / 10 ** 6 / perf_b:.0f} GB/s"
    )
    return bytes / 10**6 / perf_b
553
554
555
556
557
558
559
560
561
562


available_targets = [
    "torch",
    "tilelang",
    "flash_mla",
    "flash_infer",
    "flash_mla_triton",
]

563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
shape_configs = [{
    "b":
        batch,
    "s_q":
        1,
    "cache_seqlens":
        torch.tensor([seqlen + 2 * i for i in range(batch)], dtype=torch.int32, device="cuda"),
    "h_q":
        head,
    "h_kv":
        1,
    "d":
        512 + 64,
    "dv":
        512,
    "causal":
        True,
    "dtype":
        torch.float16
} for batch in [128] for seqlen in [1024, 2048, 4096, 8192, 16384, 32768] for head in [128]]
583
584
585
586
587
588
589
590
591
592
593
594


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--baseline", type=str, default="torch")
    parser.add_argument("--target", type=str, default="tilelang")
    parser.add_argument("--all", action="store_true")
    parser.add_argument("--one", action="store_true")
    parser.add_argument("--compare", action="store_true")
    args = parser.parse_args()
    return args

595

596
597
598
599
600
601
602
603
if __name__ == "__main__":
    args = get_args()
    benchmark_type = "all" if args.all else f"{args.baseline}_vs_{args.target}" if args.compare else args.target
    with open(f"{benchmark_type}_perf.csv", "w") as fout:
        fout.write("name,batch,seqlen,head,bw\n")
        for shape in shape_configs:
            if args.all:
                for target in available_targets:
604
605
606
607
608
609
                    perf = compare_a(target, shape["b"], shape["s_q"], shape["cache_seqlens"],
                                     shape["h_q"], shape["h_kv"], shape["d"], shape["dv"],
                                     shape["causal"], shape["dtype"])
                    fout.write(
                        f'{target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n'
                    )
610
            elif args.compare:
611
612
613
614
615
616
617
618
619
                perfa, prefb = compare_ab(args.baseline, args.target, shape["b"], shape["s_q"],
                                          shape["cache_seqlens"], shape["h_q"], shape["h_kv"],
                                          shape["d"], shape["dv"], shape["causal"], shape["dtype"])
                fout.write(
                    f'{args.baseline},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perfa:.0f}\n'
                )
                fout.write(
                    f'{args.target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{prefb:.0f}\n'
                )
620
            elif args.one:
621
622
623
624
625
626
                perf = compare_a(args.target, shape["b"], shape["s_q"], shape["cache_seqlens"],
                                 shape["h_q"], shape["h_kv"], shape["d"], shape["dv"],
                                 shape["causal"], shape["dtype"])
                fout.write(
                    f'{args.target},{shape["b"]},{shape["cache_seqlens"].float().mean().cpu().item():.0f},{shape["h_q"]},{perf:.0f}\n'
                )