test_tilelang_tilelibrary_gemm_sp.py 11.9 KB
Newer Older
1
import pytest
2
3
4
5
import torch
import tilelang
import tilelang.testing

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
from tilelang.utils.sparse import compress, randn_semi_sparse, randint_semi_sparse
from tilelang.layout import make_cutlass_metadata_layout
from tilelang.utils.tensor import torch_assert_close, map_torch_type
from tilelang.intrinsics.mma_sp_macro_generator import SparseTensorCoreIntrinEmitter

torch.backends.cuda.matmul.allow_tf32 = False
# torch.manual_seed(42)  # only enable when debugging


def generate_dense_input(M, N, K, trans_A, trans_B, in_dtype):
    is_8bit = "8" in in_dtype
    is_unsigned = "uint" in in_dtype
    is_int = "int" in in_dtype
    if is_int:
        if is_8bit:
            low, high = (0, 4) if is_unsigned else (-2, 2)
        else:
            low, high = (0, 128) if is_unsigned else (-64, 64)
24
25
        A = randint_semi_sparse(M, K, low=low, high=high, dtype=map_torch_type(in_dtype), device="cuda", transposed=trans_A)
        B = torch.randint(size=(N, K) if trans_B else (K, N), low=low, high=high, dtype=map_torch_type(in_dtype), device="cuda")
26
    else:
27
28
        A = randn_semi_sparse(M, K, dtype=torch.float32, device="cuda", transposed=trans_A).to(map_torch_type(in_dtype))
        B = torch.randn((N, K) if trans_B else (K, N), device="cuda", dtype=torch.float32).to(map_torch_type(in_dtype))
29
    return A, B
30
31


32
def matmul_sp_sm90(
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    trans_A,
    trans_B,
):
    E_factor = 4 if in_dtype == "float32" else 8
    A_sparse_shape = (M, K // 2) if not trans_A else (K // 2, M)
    B_shape = (K, N) if not trans_B else (N, K)
    A_shared_shape = (block_M, block_K // 2) if not trans_A else (block_K // 2, block_M)
    B_shared_shape = (block_K, block_N) if not trans_B else (block_N, block_K)

    import tilelang.language as T

    @T.prim_func
    def main(
57
58
59
60
        A_sparse: T.Tensor(A_sparse_shape, in_dtype),
        E: T.Tensor((M, K // E_factor), "uint8"),
        B: T.Tensor(B_shape, in_dtype),
        C: T.Tensor((M, N), out_dtype),
61
62
63
64
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
65
            E_shared = T.alloc_shared((block_M, block_K // E_factor), "uint8")
66
            C_frag = T.alloc_fragment((block_M, block_N), accum_dtype)
67
68
69
70
71
72
            T.annotate_layout(
                {
                    E: make_cutlass_metadata_layout(E, mma_dtype=in_dtype, arch="9.0", block_k=block_K),
                    E_shared: make_cutlass_metadata_layout(E_shared, mma_dtype=in_dtype, arch="9.0", block_k=block_K),
                }
            )
73
            T.disable_warp_group_reg_alloc()
74
            T.clear(C_frag)
75
76
77
78
79
80
81
82
83
84
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(E[by * block_M, k * block_K // E_factor], E_shared)
                if trans_A:
                    T.copy(A_sparse[k * block_K // 2, by * block_M], A_shared)
                else:
                    T.copy(A_sparse[by * block_M, k * block_K // 2], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
85
86
                T.gemm_sp(A_shared, E_shared, B_shared, C_frag, trans_A, trans_B)
            T.copy(C_frag, C[by * block_M, bx * block_N])
87
88
89
90

    return main


91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
def matmul_sp_sm80(
    M,
    N,
    K,
    block_M,
    block_N,
    block_K,
    in_dtype,
    out_dtype,
    accum_dtype,
    num_stages,
    threads,
    trans_A,
    trans_B,
):
    is_8_bit = "8" in in_dtype
107
    metadata_dtype = "int32" if is_8_bit else "int16"
108
    E_factor = SparseTensorCoreIntrinEmitter.E_FACTOR_MAP[in_dtype][metadata_dtype]
109
110
111
112
113
114
115
116
117
    A_sparse_shape = (M, K // 2) if not trans_A else (K // 2, M)
    B_shape = (K, N) if not trans_B else (N, K)
    A_shared_shape = (block_M, block_K // 2) if not trans_A else (block_K // 2, block_M)
    B_shared_shape = (block_K, block_N) if not trans_B else (block_N, block_K)

    import tilelang.language as T

    @T.prim_func
    def main(
118
119
120
121
        A_sparse: T.Tensor(A_sparse_shape, in_dtype),
        E: T.Tensor((M, K // E_factor), metadata_dtype),
        B: T.Tensor(B_shape, in_dtype),
        C: T.Tensor((M, N), out_dtype),
122
123
124
125
    ):
        with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=threads) as (bx, by):
            A_shared = T.alloc_shared(A_shared_shape, in_dtype)
            B_shared = T.alloc_shared(B_shared_shape, in_dtype)
126
            E_shared = T.alloc_shared((block_M, block_K // E_factor), metadata_dtype)
127
            C_frag = T.alloc_fragment((block_M, block_N), accum_dtype)
128
129
130
131
132
133
            T.annotate_layout(
                {
                    E: make_cutlass_metadata_layout(E, mma_dtype=in_dtype, arch="8.0"),
                    E_shared: make_cutlass_metadata_layout(E_shared, mma_dtype=in_dtype, arch="8.0"),
                }
            )
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
            T.clear(C_frag)
            for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
                T.copy(E[by * block_M, k * block_K // E_factor], E_shared)
                if trans_A:
                    T.copy(A_sparse[k * block_K // 2, by * block_M], A_shared)
                else:
                    T.copy(A_sparse[by * block_M, k * block_K // 2], A_shared)
                if trans_B:
                    T.copy(B[bx * block_N, k * block_K], B_shared)
                else:
                    T.copy(B[k * block_K, bx * block_N], B_shared)
                T.gemm_sp(A_shared, E_shared, B_shared, C_frag, trans_A, trans_B)
            T.copy(C_frag, C[by * block_M, bx * block_N])

    return main


151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def normalize(tensor, max_range=100.0):
    assert max_range <= 448.0
    max_v = tensor.abs().max().clamp(1e-4)
    scaler = max_range / max_v
    return tensor * scaler


def calc_diff(x, y):
    x, y = x.double(), y.double()
    denominator = (x * x + y * y).sum()
    sim = 2 * (x * y).sum() / denominator
    return 1 - sim


def run_gemm_sp(
166
    kernel,
167
168
169
170
171
172
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    block_K,
173
174
    trans_A,
    trans_B,
175
176
):
    kernel = tilelang.compile(
177
        kernel,
178
179
        out_idx=[-1],
    )
180
181
182
183
184
185
186
187
    A, B = generate_dense_input(
        M=M,
        N=N,
        K=K,
        trans_A=trans_A,
        trans_B=trans_B,
        in_dtype=in_dtype,
    )
188
    A_sparse, E = compress(A, transposed=trans_A, block_k=block_K)
189
190
191
192
193
194
195
196
197
198
199

    C_sp = kernel(A_sparse, E, B)

    def _matmul(A, B):
        if trans_A:
            A = A.T
        if trans_B:
            B = B.T
        if "float8" in in_dtype or "int8" in in_dtype:
            A = A.to(torch.float32)
            B = B.to(torch.float32)
200
        return torch.matmul(A, B)
201
202

    C = _matmul(A, B)
203

204
    if "float8" in in_dtype:
205
206
207
        diff = calc_diff(C_sp, C)
        assert diff < 1e-3, f"{diff=}"
    else:
208
209
210
211
212
213
214
215
        torch_assert_close(
            C_sp.to(torch.float32),
            C.to(torch.float32),
            rtol=1e-3,
            atol=1e-3,
            base_name="tilelang_sp",
            ref_name="ref_dense",
        )
216
217
218
    print("pass")


219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
def run_gemm_sp_sm90(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    block_M,
    block_N,
    block_K,
    num_stages,
    num_threads,
    trans_A=False,
    trans_B=False,
):
    kernel = matmul_sp_sm90(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        in_dtype,
        out_dtype,
        accum_dtype,
        num_stages,
        num_threads,
        trans_A,
        trans_B,
    )
    run_gemm_sp(
        kernel,
        M,
        N,
        K,
        in_dtype,
        out_dtype,
        block_K,
        trans_A,
        trans_B,
    )


def run_gemm_sp_sm80(
    M,
    N,
    K,
    in_dtype,
    out_dtype,
    accum_dtype,
    block_M,
    block_N,
    block_K,
    num_stages,
    num_threads,
    trans_A=False,
    trans_B=False,
):
    kernel = matmul_sp_sm80(
        M,
        N,
        K,
        block_M,
        block_N,
        block_K,
        in_dtype,
        out_dtype,
        accum_dtype,
        num_stages,
        num_threads,
        trans_A,
        trans_B,
    )
    run_gemm_sp(
        kernel,
        M,
        N,
        K,
        in_dtype,
        out_dtype,
        block_K,
        trans_A,
        trans_B,
    )


305
306
@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version(9, 0)
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
@pytest.mark.parametrize(
    "M, N, K, in_dtype, out_dtype, accum_dtype, block_M, block_N, block_K, num_stages, num_threads, trans_A, trans_B",
    [
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 32, 2, 128, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 32, 0, 256, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 2, 128, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 128, 128, 128, 0, 128, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 128, 128, 128, 2, 128, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 128, 256, 0, 128, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 128, 256, 2, 128, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, False, True),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, True, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, True, True),
        (512, 1024, 768, "float8_e4m3", "float16", "float16", 64, 64, 64, 2, 128, False, True),
        (512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 2, 128, False, True),
    ],
)
def test_gemm_sp_sm90(M, N, K, in_dtype, out_dtype, accum_dtype, block_M, block_N, block_K, num_stages, num_threads, trans_A, trans_B):
    run_gemm_sp_sm90(M, N, K, in_dtype, out_dtype, accum_dtype, block_M, block_N, block_K, num_stages, num_threads, trans_A, trans_B)
327

328
329
330
331

@tilelang.testing.requires_cuda
@tilelang.testing.requires_cuda_compute_version_ge(8, 0)
@tilelang.testing.requires_cuda_compute_version_le(8, 9)
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
@pytest.mark.parametrize(
    "M, N, K, in_dtype, out_dtype, accum_dtype, block_M, block_N, block_K, num_stages, num_threads, trans_A, trans_B",
    [
        (512, 1024, 768, "float16", "float32", "float32", 32, 32, 32, 0, 32, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 32, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 32, 32, 64, 0, 32, False, True),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 32, False, True),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 0, 128, False, True),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 1, 128, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 2, 128, False, False),
        (512, 1024, 768, "float16", "float32", "float32", 64, 64, 64, 3, 128, False, False),
        (512, 1024, 768, "int8", "int32", "int32", 32, 32, 64, 0, 32, False, True),
        (512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 0, 32, False, True),
        (512, 1024, 768, "int8", "int32", "int32", 128, 128, 128, 0, 128, False, True),
        (512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 1, 128, False, True),
        (512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 2, 128, False, True),
        (512, 1024, 768, "int8", "int32", "int32", 64, 64, 64, 3, 128, False, True),
    ],
)
def test_gemm_sp_sm80(M, N, K, in_dtype, out_dtype, accum_dtype, block_M, block_N, block_K, num_stages, num_threads, trans_A, trans_B):
    run_gemm_sp_sm80(M, N, K, in_dtype, out_dtype, accum_dtype, block_M, block_N, block_K, num_stages, num_threads, trans_A, trans_B)
354
355
356
357


if __name__ == "__main__":
    tilelang.testing.main()