causal_lm.py 16.6 KB
Newer Older
1
2
import torch

3
from dataclasses import dataclass
4
from transformers import AutoTokenizer, AutoModelForCausalLM
OlivierDehaene's avatar
OlivierDehaene committed
5
from typing import Optional, Tuple, List, Type
6
7

from text_generation.models import Model
8
9
10
11
12
13
14
15
16
from text_generation.models.types import GeneratedText
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria


@dataclass
class CausalLMBatch:
    batch_id: int
    requests: List[generate_pb2.Request]
OlivierDehaene's avatar
OlivierDehaene committed
17
18
19
20
21
22
23

    # Decoder values
    input_ids: torch.Tensor
    attention_mask: torch.Tensor
    past_key_values: Optional[List[Tuple]]

    # All tokens
24
    all_input_ids: List[torch.Tensor]
OlivierDehaene's avatar
OlivierDehaene committed
25
    all_logprobs: List[Optional[torch.Tensor]]
OlivierDehaene's avatar
OlivierDehaene committed
26
27
28
29
30

    # Lengths of all generations present in the batch
    input_lengths: List[int]

    # Generation helpers
31
32
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]
OlivierDehaene's avatar
OlivierDehaene committed
33
34

    # Metadata used for padding
35
36
37
    size: int
    max_sequence_length: int

38
39
40
    # Past metadata
    keys_head_dim_last: bool = True

41
42
43
44
45
46
47
48
49
50
51
52
53
54
    def to_pb(self):
        return generate_pb2.Batch(
            id=self.batch_id,
            requests=self.requests,
            size=self.size,
        )

    @classmethod
    def from_pb(
        cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
    ) -> "CausalLMBatch":
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
OlivierDehaene's avatar
OlivierDehaene committed
55
        input_lengths = []
OlivierDehaene's avatar
OlivierDehaene committed
56
        all_logprobs = []
57
58
59
60

        # Parse batch
        for r in pb.requests:
            inputs.append(r.inputs)
OlivierDehaene's avatar
OlivierDehaene committed
61
            input_lengths.append(r.input_length)
62
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters))
63
            stopping_criterias.append(
64
                StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
65
            )
OlivierDehaene's avatar
OlivierDehaene committed
66
            all_logprobs.append(None)
67

68
        pad_to_multiple_of = 8 if device.type == "cuda" else None
OlivierDehaene's avatar
OlivierDehaene committed
69
        tokenized_inputs = tokenizer(
70
71
72
73
            inputs,
            return_tensors="pt",
            padding=True,
            pad_to_multiple_of=pad_to_multiple_of,
74
        ).to(device)
OlivierDehaene's avatar
OlivierDehaene committed
75
        all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
76
77
78
79

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
OlivierDehaene's avatar
OlivierDehaene committed
80
81
82
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            past_key_values=None,
83
            all_input_ids=all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
84
            all_logprobs=all_logprobs,
OlivierDehaene's avatar
OlivierDehaene committed
85
            input_lengths=input_lengths,
86
87
88
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=pb.size,
OlivierDehaene's avatar
OlivierDehaene committed
89
            max_sequence_length=max(input_lengths),
90
91
92
93
94
95
96
97
98
99
        )

    @classmethod
    def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
        # Used for padding
        total_batch_size = sum(batch.size for batch in batches)
        max_sequence_length = max(batch.max_sequence_length for batch in batches)

        # Batch attributes
        requests = []
OlivierDehaene's avatar
OlivierDehaene committed
100
        input_lengths = []
101
        all_input_ids = []
OlivierDehaene's avatar
OlivierDehaene committed
102
        all_logprobs = []
103
104
105
        next_token_choosers = []
        stopping_criterias = []

OlivierDehaene's avatar
OlivierDehaene committed
106
107
108
109
110
        # Batch tensors
        input_ids = None
        attention_mask = None
        past_key_values = []

111
112
113
114
115
        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
OlivierDehaene's avatar
OlivierDehaene committed
116
            input_lengths.extend(batch.input_lengths)
117
            all_input_ids.extend(batch.all_input_ids)
OlivierDehaene's avatar
OlivierDehaene committed
118
            all_logprobs.extend(batch.all_logprobs)
119
120
121
122
123
124
125
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Slicing end index for this batch
            end_index = start_index + batch.size

            # We only concatenate batches that did at least one step
126
127
            if batch.past_key_values is None:
                raise ValueError("only concatenate prefilled batches")
128

OlivierDehaene's avatar
OlivierDehaene committed
129
130
131
132
133
            # Create empty tensor
            # input_ids is always of shape [batch_size, 1]
            # We do not need to pad it
            if input_ids is None:
                input_ids = torch.empty(
134
                    (total_batch_size, 1),
OlivierDehaene's avatar
OlivierDehaene committed
135
136
                    dtype=batch.input_ids.dtype,
                    device=batch.input_ids.device,
137
                )
OlivierDehaene's avatar
OlivierDehaene committed
138
139
140
141
142
143
            # Copy to correct indices
            input_ids[start_index:end_index] = batch.input_ids

            # Create padded tensor
            if attention_mask is None:
                attention_mask = torch.zeros(
144
                    (total_batch_size, max_sequence_length),
OlivierDehaene's avatar
OlivierDehaene committed
145
146
                    dtype=batch.attention_mask.dtype,
                    device=batch.attention_mask.device,
147
148
149
                )

            # We need to slice the attention mask to remove padding from previous steps
OlivierDehaene's avatar
OlivierDehaene committed
150
            attention_mask[
151
                start_index:end_index, -batch.max_sequence_length :
OlivierDehaene's avatar
OlivierDehaene committed
152
            ] = batch.attention_mask[:, -batch.max_sequence_length :]
153

OlivierDehaene's avatar
OlivierDehaene committed
154
            for j, past in enumerate(batch.past_key_values):
155
156
                past_keys, past_values = past

157
                # Shenanigans to get dimensions because BLOOM outputs a past with a different shape
158
159
160
161
162
                # BLOOM Keys:   [batch_size * num_heads, head_dim, seq_length]
                # BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
                past_keys = past_keys.view(batch.size, -1, *past_keys.shape[-2:])
                past_values = past_values.view(batch.size, -1, *past_values.shape[-2:])

163
                _, num_heads, padded_sequence_length, head_dim = past_values.shape
164

165
                padded_past_values_shape = (
166
167
168
                    total_batch_size,
                    num_heads,
                    max_sequence_length - 1,
169
                    head_dim,
170
171
                )

172
173
                if batch.keys_head_dim_last:
                    padded_past_keys_shape = padded_past_values_shape
174
                # seq_length is last for BLOOM
175
                else:
176
                    padded_past_keys_shape = (
177
178
179
                        total_batch_size,
                        num_heads,
                        head_dim,
180
                        max_sequence_length - 1,
181
182
                    )

183
                # This will run only once per layer
OlivierDehaene's avatar
OlivierDehaene committed
184
                if j == len(past_key_values):
185
186
187
188
189
190
191
192
193
194
195
196
197
                    padded_past_keys = torch.zeros(
                        padded_past_keys_shape,
                        dtype=past_keys.dtype,
                        device=past_keys.device,
                    )
                    padded_past_values = torch.zeros(
                        padded_past_values_shape,
                        dtype=past_values.dtype,
                        device=past_values.device,
                    )
                    past_key_values.append((padded_past_keys, padded_past_values))

                # We slice the past keys and values to remove the padding from previous batches
198
                if batch.keys_head_dim_last:
199
                    past_key_values[j][0][
200
201
202
203
                        start_index:end_index,
                        :,
                        -(batch.max_sequence_length - 1) :,
                        :,
204
                    ] = past_keys[:, :, -(batch.max_sequence_length - 1) :, :]
205
                else:
206
                    past_key_values[j][0][
207
208
209
210
                        start_index:end_index,
                        :,
                        :,
                        -(batch.max_sequence_length - 1) :,
211
212
213
214
215
                    ] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]

                past_key_values[j][1][
                    start_index:end_index, :, -(batch.max_sequence_length - 1) :, :
                ] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
216
217
218
219
220
221
222

            start_index += batch.size

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            input_ids=input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
223
224
            attention_mask=attention_mask,
            past_key_values=past_key_values,
225
            all_input_ids=all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
226
            all_logprobs=all_logprobs,
OlivierDehaene's avatar
OlivierDehaene committed
227
            input_lengths=input_lengths,
228
229
230
231
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=total_batch_size,
            max_sequence_length=max_sequence_length,
232
            keys_head_dim_last=batches[0].keys_head_dim_last,
233
        )
234
235
236


class CausalLM(Model):
OlivierDehaene's avatar
OlivierDehaene committed
237
    def __init__(self, model_name: str, quantize=False):
238
239
240
241
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
        else:
242
243
244
            if quantize:
                raise ValueError("quantization is not available on CPU")

245
246
247
248
249
250
251
252
            device = torch.device("cpu")
            dtype = torch.float32

        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=dtype,
            device_map="auto" if torch.cuda.is_available() else None,
OlivierDehaene's avatar
OlivierDehaene committed
253
            load_in_8bit=quantize,
254
        ).eval()
255
256
257
258
259
        tokenizer.pad_token_id = (
            self.model.config.pad_token_id
            if self.model.config.pad_token_id is not None
            else self.model.config.eos_token_id
        )
260

261
262
263
264
265
266
267
268
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return CausalLMBatch
269
270

    def forward(
271
        self, input_ids, attention_mask, past_key_values: Optional = None
272
273
274
275
276
277
278
279
280
    ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
        # Model Forward
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=True,
        )
        return outputs.logits, outputs.past_key_values
281
282
283
284
285
286
287
288
289

    def generate_token(
        self, batch: CausalLMBatch
    ) -> Tuple[List[GeneratedText], Optional[CausalLMBatch]]:
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        context_manager = (
            torch.no_grad if self.device.type == "cpu" else torch.inference_mode
        )
        with context_manager():
OlivierDehaene's avatar
OlivierDehaene committed
290
291
292
            logits, past = self.forward(
                batch.input_ids, batch.attention_mask, batch.past_key_values
            )
293
294
295
296

        # List of indices to cache
        next_batch_keep_indices = []

OlivierDehaene's avatar
OlivierDehaene committed
297
298
        # New values for next forward
        next_batch_input_lengths = []
299
300
        next_batch_input_ids = []
        next_batch_all_input_ids = []
OlivierDehaene's avatar
OlivierDehaene committed
301
        next_batch_all_logprobs = []
302

OlivierDehaene's avatar
OlivierDehaene committed
303
        # Metadata
304
305
306
307
308
309
310
311
312
        next_batch_size = 0
        next_batch_max_sequence_length = 0

        # Finished requests
        generated_texts: List[GeneratedText] = []

        # Zipped iterator
        iterator = zip(
            batch.requests,
OlivierDehaene's avatar
OlivierDehaene committed
313
            batch.input_lengths,
314
315
316
317
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
318
            batch.all_logprobs,
319
320
321
322
323
324
325
326
327
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            logits,
            next_token_chooser,
            stopping_criteria,
OlivierDehaene's avatar
OlivierDehaene committed
328
329
            all_input_ids,
            all_logprobs,
330
331
        ) in enumerate(iterator):
            # Select next token
OlivierDehaene's avatar
OlivierDehaene committed
332
333
            tokens, logprobs = next_token_chooser(all_input_ids, logits)
            next_token = tokens[-1].view(1, 1)
334
335

            # Append next token to all tokens
OlivierDehaene's avatar
OlivierDehaene committed
336
337
338
339
340
341
342
343
344
345
            all_input_ids = torch.cat([all_input_ids, next_token])
            new_input_length = input_length + 1

            if all_logprobs is None:
                # logprobs of all prompt tokens (except the first one) and the generated token
                all_logprobs = logprobs.gather(1, all_input_ids[1:])
            else:
                # logprob of the generated token
                next_token_logprob = logprobs[-1, next_token]
                all_logprobs = torch.cat([all_logprobs, next_token_logprob])
346
347

            # Evaluate stopping criteria
348
349
350
351
352
353
            stop, reason = stopping_criteria(
                next_token.squeeze(),
                self.tokenizer.decode(
                    next_token.squeeze(), clean_up_tokenization_spaces=False
                ),
            )
354
            if stop:
355
                # Decode all tokens
OlivierDehaene's avatar
OlivierDehaene committed
356
                output_text = self.tokenizer.decode(
357
358
                    all_input_ids.squeeze(-1), skip_special_tokens=True,
                    cleanup_tokenization_spaces=False
359
                )
OlivierDehaene's avatar
OlivierDehaene committed
360
361
362
363
364
365
366
367
                # Slice with input_length to remove padding
                token_ids = all_input_ids[-new_input_length:]
                tokens = self.tokenizer.batch_decode(token_ids)
                # Add NaN for the first prompt token
                logprobs = [float("nan")] + all_logprobs[-new_input_length:].squeeze(
                    1
                ).tolist()

368
369
                # Add to the list of finished generations with the original request
                generated_texts.append(
370
                    GeneratedText(
OlivierDehaene's avatar
OlivierDehaene committed
371
372
373
374
375
376
377
                        request=request,
                        output_text=output_text,
                        generated_tokens=stopping_criteria.current_tokens,
                        tokens=tokens,
                        token_ids=token_ids.squeeze(1).tolist(),
                        logprobs=logprobs,
                        reason=reason,
378
                    )
379
380
381
382
383
                )
            # add to the next batch
            else:
                next_batch_keep_indices.append(i)
                next_batch_input_ids.append(next_token)
OlivierDehaene's avatar
OlivierDehaene committed
384
385
                next_batch_all_input_ids.append(all_input_ids)
                next_batch_all_logprobs.append(all_logprobs)
386
                next_batch_size += 1
OlivierDehaene's avatar
OlivierDehaene committed
387
                next_batch_input_lengths.append(new_input_length)
388
389
390
391
392
393
394
395
                next_batch_max_sequence_length = max(
                    next_batch_max_sequence_length, new_input_length
                )

        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
            return generated_texts, None

OlivierDehaene's avatar
OlivierDehaene committed
396
397
398
        next_batch_input_ids = torch.cat(next_batch_input_ids, dim=0)
        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
399
400
        if generated_texts:
            # Apply indices to attention mask, past key values and other items that need to be cached
OlivierDehaene's avatar
OlivierDehaene committed
401
            next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
402
            # Force past to be of dim [batch_size, num_heads, ...] for easy indexing
OlivierDehaene's avatar
OlivierDehaene committed
403
            next_batch_past_key_values = [
404
                [
405
                    t.view(batch.size, -1, *t.shape[-2:])[next_batch_keep_indices]
406
407
408
409
410
411
412
413
414
415
416
417
                    for t in layer
                ]
                for layer in past
            ]
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
OlivierDehaene's avatar
OlivierDehaene committed
418
419
            next_batch_attention_mask = batch.attention_mask
            next_batch_past_key_values = past
420
421
422
423
424
            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

        # Update attention_mask with padding as we added a new token to input_ids
OlivierDehaene's avatar
OlivierDehaene committed
425
        next_batch_attention_mask = torch.cat(
426
            [
OlivierDehaene's avatar
OlivierDehaene committed
427
                next_batch_attention_mask,
428
                next_batch_attention_mask.new_ones(next_batch_size, 1),
429
430
431
432
433
434
435
436
            ],
            dim=1,
        )

        next_batch = CausalLMBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
            input_ids=next_batch_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
437
438
            attention_mask=next_batch_attention_mask,
            past_key_values=next_batch_past_key_values,
439
            all_input_ids=next_batch_all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
440
            all_logprobs=next_batch_all_logprobs,
OlivierDehaene's avatar
OlivierDehaene committed
441
            input_lengths=next_batch_input_lengths,
442
443
444
445
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
            size=next_batch_size,
            max_sequence_length=next_batch_max_sequence_length,
446
            keys_head_dim_last=batch.keys_head_dim_last,
447
448
        )
        return generated_texts, next_batch