causal_lm.py 14.8 KB
Newer Older
1
2
import torch

3
from dataclasses import dataclass
4
from transformers import AutoTokenizer, AutoModelForCausalLM
OlivierDehaene's avatar
OlivierDehaene committed
5
from typing import Optional, Tuple, List, Type
6
7

from text_generation.models import Model
8
9
10
11
12
13
14
15
16
from text_generation.models.types import GeneratedText
from text_generation.pb import generate_pb2
from text_generation.utils import NextTokenChooser, StoppingCriteria


@dataclass
class CausalLMBatch:
    batch_id: int
    requests: List[generate_pb2.Request]
OlivierDehaene's avatar
OlivierDehaene committed
17
18
19
20
21
22
23

    # Decoder values
    input_ids: torch.Tensor
    attention_mask: torch.Tensor
    past_key_values: Optional[List[Tuple]]

    # All tokens
24
    all_input_ids: List[torch.Tensor]
OlivierDehaene's avatar
OlivierDehaene committed
25
26
27
28
29

    # Lengths of all generations present in the batch
    input_lengths: List[int]

    # Generation helpers
30
31
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]
OlivierDehaene's avatar
OlivierDehaene committed
32
33

    # Metadata used for padding
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    size: int
    max_sequence_length: int

    def to_pb(self):
        return generate_pb2.Batch(
            id=self.batch_id,
            requests=self.requests,
            size=self.size,
        )

    @classmethod
    def from_pb(
        cls, pb: generate_pb2.Batch, tokenizer: AutoTokenizer, device: torch.device
    ) -> "CausalLMBatch":
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
OlivierDehaene's avatar
OlivierDehaene committed
51
        input_lengths = []
52
53
54
55

        # Parse batch
        for r in pb.requests:
            inputs.append(r.inputs)
OlivierDehaene's avatar
OlivierDehaene committed
56
            input_lengths.append(r.input_length)
57
58
59
60
61
62
63
64
65
66
67
68
69
70
            next_token_choosers.append(
                NextTokenChooser(
                    temperature=r.parameters.temperature,
                    top_k=r.parameters.top_k,
                    top_p=r.parameters.top_p,
                    do_sample=r.parameters.do_sample,
                )
            )
            stopping_criterias.append(
                StoppingCriteria(
                    eos_token_id=tokenizer.eos_token_id, max_new_tokens=r.max_new_tokens
                )
            )

OlivierDehaene's avatar
OlivierDehaene committed
71
        tokenized_inputs = tokenizer(
72
73
            inputs, return_tensors="pt", padding=True, pad_to_multiple_of=8
        ).to(device)
OlivierDehaene's avatar
OlivierDehaene committed
74
        all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)
75
76
77
78

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
OlivierDehaene's avatar
OlivierDehaene committed
79
80
81
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
            past_key_values=None,
82
            all_input_ids=all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
83
            input_lengths=input_lengths,
84
85
86
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=pb.size,
OlivierDehaene's avatar
OlivierDehaene committed
87
            max_sequence_length=max(input_lengths),
88
89
90
91
92
93
94
95
96
97
        )

    @classmethod
    def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
        # Used for padding
        total_batch_size = sum(batch.size for batch in batches)
        max_sequence_length = max(batch.max_sequence_length for batch in batches)

        # Batch attributes
        requests = []
OlivierDehaene's avatar
OlivierDehaene committed
98
        input_lengths = []
99
100
101
102
        all_input_ids = []
        next_token_choosers = []
        stopping_criterias = []

OlivierDehaene's avatar
OlivierDehaene committed
103
104
105
106
107
        # Batch tensors
        input_ids = None
        attention_mask = None
        past_key_values = []

108
109
110
111
112
        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
OlivierDehaene's avatar
OlivierDehaene committed
113
            input_lengths.extend(batch.input_lengths)
114
115
116
117
118
119
120
121
            all_input_ids.extend(batch.all_input_ids)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

            # Slicing end index for this batch
            end_index = start_index + batch.size

            # We only concatenate batches that did at least one step
OlivierDehaene's avatar
OlivierDehaene committed
122
            if batch.input_ids.shape[1] > 1:
123
124
                raise ValueError("Batch input_ids should be of shape (batch_size, 1)")

OlivierDehaene's avatar
OlivierDehaene committed
125
126
127
128
129
            # Create empty tensor
            # input_ids is always of shape [batch_size, 1]
            # We do not need to pad it
            if input_ids is None:
                input_ids = torch.empty(
130
                    (total_batch_size, 1),
OlivierDehaene's avatar
OlivierDehaene committed
131
132
                    dtype=batch.input_ids.dtype,
                    device=batch.input_ids.device,
133
                )
OlivierDehaene's avatar
OlivierDehaene committed
134
135
136
137
138
139
            # Copy to correct indices
            input_ids[start_index:end_index] = batch.input_ids

            # Create padded tensor
            if attention_mask is None:
                attention_mask = torch.zeros(
140
                    (total_batch_size, max_sequence_length),
OlivierDehaene's avatar
OlivierDehaene committed
141
142
                    dtype=batch.attention_mask.dtype,
                    device=batch.attention_mask.device,
143
144
145
                )

            # We need to slice the attention mask to remove padding from previous steps
OlivierDehaene's avatar
OlivierDehaene committed
146
            attention_mask[
147
                start_index:end_index, -batch.max_sequence_length :
OlivierDehaene's avatar
OlivierDehaene committed
148
            ] = batch.attention_mask[:, -batch.max_sequence_length :]
149

OlivierDehaene's avatar
OlivierDehaene committed
150
            for j, past in enumerate(batch.past_key_values):
151
152
                past_keys, past_values = past

153
                # Shenanigans to get dimensions because BLOOM outputs a past with a different shape
154
155
156
157
158
                # BLOOM Keys:   [batch_size * num_heads, head_dim, seq_length]
                # BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
                past_keys = past_keys.view(batch.size, -1, *past_keys.shape[-2:])
                past_values = past_values.view(batch.size, -1, *past_values.shape[-2:])

159
                _, num_heads, padded_sequence_length, head_dim = past_values.shape
160

161
                padded_past_values_shape = (
162
163
164
                    total_batch_size,
                    num_heads,
                    max_sequence_length - 1,
165
                    head_dim,
166
167
                )

168
169
170
171
                # seq_length is last for BLOOM
                if past_keys.shape[-2] == head_dim:
                    past_keys_head_dim_last = False
                    padded_past_keys_shape = (
172
173
174
                        total_batch_size,
                        num_heads,
                        head_dim,
175
                        max_sequence_length - 1,
176
                    )
177
178
179
                elif past_keys.shape[-1] == head_dim:
                    past_keys_head_dim_last = True
                    padded_past_keys_shape = padded_past_values_shape
180
                else:
181
                    raise ValueError(f"past_keys shape {past_keys.shape} is not valid")
182

183
                # This will run only once per layer
OlivierDehaene's avatar
OlivierDehaene committed
184
                if j == len(past_key_values):
185
186
187
188
189
190
191
192
193
194
195
196
197
                    padded_past_keys = torch.zeros(
                        padded_past_keys_shape,
                        dtype=past_keys.dtype,
                        device=past_keys.device,
                    )
                    padded_past_values = torch.zeros(
                        padded_past_values_shape,
                        dtype=past_values.dtype,
                        device=past_values.device,
                    )
                    past_key_values.append((padded_past_keys, padded_past_values))

                # We slice the past keys and values to remove the padding from previous batches
198
199
                if past_keys_head_dim_last:
                    past_key_values[j][0][
200
201
202
203
                        start_index:end_index,
                        :,
                        -(batch.max_sequence_length - 1) :,
                        :,
204
                    ] = past_keys[:, :, -(batch.max_sequence_length - 1) :, :]
205
                else:
206
                    past_key_values[j][0][
207
208
209
210
                        start_index:end_index,
                        :,
                        :,
                        -(batch.max_sequence_length - 1) :,
211
212
213
214
215
                    ] = past_keys[:, :, :, -(batch.max_sequence_length - 1) :]

                past_key_values[j][1][
                    start_index:end_index, :, -(batch.max_sequence_length - 1) :, :
                ] = past_values[:, :, -(batch.max_sequence_length - 1) :, :]
216
217
218
219
220
221
222

            start_index += batch.size

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
            input_ids=input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
223
224
            attention_mask=attention_mask,
            past_key_values=past_key_values,
225
            all_input_ids=all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
226
            input_lengths=input_lengths,
227
228
229
230
231
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=total_batch_size,
            max_sequence_length=max_sequence_length,
        )
232
233
234


class CausalLM(Model):
OlivierDehaene's avatar
OlivierDehaene committed
235
    def __init__(self, model_name: str, quantize=False):
236
237
238
239
240
241
242
243
244
245
246
247
        if torch.cuda.is_available():
            device = torch.device("cuda")
            dtype = torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float32
        else:
            device = torch.device("cpu")
            dtype = torch.float32

        tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
        self.model = AutoModelForCausalLM.from_pretrained(
            model_name,
            torch_dtype=dtype,
            device_map="auto" if torch.cuda.is_available() else None,
OlivierDehaene's avatar
OlivierDehaene committed
248
            load_in_8bit=quantize,
249
        ).eval()
250
        tokenizer.pad_token_id = self.model.config.pad_token_id
251

252
253
254
255
256
257
258
259
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return CausalLMBatch
260
261

    def forward(
262
        self, input_ids, attention_mask, past_key_values: Optional = None
263
264
265
266
267
268
269
270
271
    ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
        # Model Forward
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=True,
        )
        return outputs.logits, outputs.past_key_values
272
273
274
275
276
277
278
279
280

    def generate_token(
        self, batch: CausalLMBatch
    ) -> Tuple[List[GeneratedText], Optional[CausalLMBatch]]:
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        context_manager = (
            torch.no_grad if self.device.type == "cpu" else torch.inference_mode
        )
        with context_manager():
OlivierDehaene's avatar
OlivierDehaene committed
281
282
283
            logits, past = self.forward(
                batch.input_ids, batch.attention_mask, batch.past_key_values
            )
284
285
286
287

        # List of indices to cache
        next_batch_keep_indices = []

OlivierDehaene's avatar
OlivierDehaene committed
288
289
        # New values for next forward
        next_batch_input_lengths = []
290
291
292
        next_batch_input_ids = []
        next_batch_all_input_ids = []

OlivierDehaene's avatar
OlivierDehaene committed
293
        # Metadata
294
295
296
297
298
299
300
301
302
        next_batch_size = 0
        next_batch_max_sequence_length = 0

        # Finished requests
        generated_texts: List[GeneratedText] = []

        # Zipped iterator
        iterator = zip(
            batch.requests,
OlivierDehaene's avatar
OlivierDehaene committed
303
            batch.input_lengths,
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
            logits,
            next_token_chooser,
            stopping_criteria,
            all_tokens,
        ) in enumerate(iterator):
            # Select next token
            next_token = next_token_chooser(all_tokens, logits.unsqueeze(0)[:, -1])

            # Append next token to all tokens
            all_tokens = torch.cat([all_tokens, next_token])

            # Evaluate stopping criteria
            if stopping_criteria(all_tokens):
                # Decode all tokens
                output = self.tokenizer.decode(
                    all_tokens.squeeze(-1), skip_special_tokens=True
                )
                # Add to the list of finished generations with the original request
                generated_texts.append(
                    GeneratedText(request, output, stopping_criteria.current_tokens)
                )
            # add to the next batch
            else:
                next_batch_keep_indices.append(i)
                next_batch_input_ids.append(next_token)
                next_batch_all_input_ids.append(all_tokens)
                next_batch_size += 1
                new_input_length = input_length + 1
OlivierDehaene's avatar
OlivierDehaene committed
342
                next_batch_input_lengths.append(new_input_length)
343
344
345
346
347
348
349
350
                next_batch_max_sequence_length = max(
                    next_batch_max_sequence_length, new_input_length
                )

        # We finished all generations in the batch; there is no next batch
        if not next_batch_keep_indices:
            return generated_texts, None

OlivierDehaene's avatar
OlivierDehaene committed
351
352
353
        next_batch_input_ids = torch.cat(next_batch_input_ids, dim=0)
        # If we finished at least one generation, we need to evict the indices of the generations that finished
        # from the values of the next batch
354
355
        if generated_texts:
            # Apply indices to attention mask, past key values and other items that need to be cached
OlivierDehaene's avatar
OlivierDehaene committed
356
            next_batch_attention_mask = batch.attention_mask[next_batch_keep_indices]
357
            # Force past to be of dim [batch_size, num_heads, ...] for easy indexing
OlivierDehaene's avatar
OlivierDehaene committed
358
            next_batch_past_key_values = [
359
                [
360
                    t.view(batch.size, -1, *t.shape[-2:])[next_batch_keep_indices]
361
362
363
364
365
366
367
368
369
370
371
372
                    for t in layer
                ]
                for layer in past
            ]
            next_batch_requests = [batch.requests[i] for i in next_batch_keep_indices]
            next_batch_next_token_choosers = [
                batch.next_token_choosers[i] for i in next_batch_keep_indices
            ]
            next_batch_stopping_criterias = [
                batch.stopping_criterias[i] for i in next_batch_keep_indices
            ]
        else:
OlivierDehaene's avatar
OlivierDehaene committed
373
374
            next_batch_attention_mask = batch.attention_mask
            next_batch_past_key_values = past
375
376
377
378
379
            next_batch_requests = batch.requests
            next_batch_next_token_choosers = batch.next_token_choosers
            next_batch_stopping_criterias = batch.stopping_criterias

        # Update attention_mask with padding as we added a new token to input_ids
OlivierDehaene's avatar
OlivierDehaene committed
380
        next_batch_attention_mask = torch.cat(
381
            [
OlivierDehaene's avatar
OlivierDehaene committed
382
                next_batch_attention_mask,
383
                next_batch_attention_mask.new_ones(next_batch_size, 1),
384
385
386
387
388
389
390
391
            ],
            dim=1,
        )

        next_batch = CausalLMBatch(
            batch_id=batch.batch_id,
            requests=next_batch_requests,
            input_ids=next_batch_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
392
393
            attention_mask=next_batch_attention_mask,
            past_key_values=next_batch_past_key_values,
394
            all_input_ids=next_batch_all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
395
            input_lengths=next_batch_input_lengths,
396
397
398
399
400
401
            next_token_choosers=next_batch_next_token_choosers,
            stopping_criterias=next_batch_stopping_criterias,
            size=next_batch_size,
            max_sequence_length=next_batch_max_sequence_length,
        )
        return generated_texts, next_batch