hub.py 8.88 KB
Newer Older
1
2
3
4
5
6
7
8
import time
import os

from datetime import timedelta
from loguru import logger
from pathlib import Path
from typing import Optional, List

9
from huggingface_hub import file_download, hf_api, HfApi, hf_hub_download
10
11
12
13
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from huggingface_hub.utils import (
    LocalEntryNotFoundError,
    EntryNotFoundError,
14
    RevisionNotFoundError,  # noqa # Import here to ease try/except in other part of the lib
15
16
17
)

WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None)
18
HF_HUB_OFFLINE = os.environ.get("HF_HUB_OFFLINE", "0").lower() in ["true", "1", "yes"]
19
20


xuxzh1's avatar
last  
xuxzh1 committed
21
22
23
24
25
26
27
28
29
30
31
def _cached_adapter_weight_files(
    adapter_id: str, revision: Optional[str], extension: str
) -> List[str]:
    """Guess weight files from the cached revision snapshot directory"""
    d = _get_cached_revision_directory(adapter_id, revision)
    if not d:
        return []
    filenames = _adapter_weight_files_from_dir(d, extension)
    return filenames


32
33
34
def _cached_weight_files(
    model_id: str, revision: Optional[str], extension: str
) -> List[str]:
35
36
37
38
39
40
41
42
    """Guess weight files from the cached revision snapshot directory"""
    d = _get_cached_revision_directory(model_id, revision)
    if not d:
        return []
    filenames = _weight_files_from_dir(d, extension)
    return filenames


43
44
45
def _weight_hub_files_from_model_info(
    info: hf_api.ModelInfo, extension: str
) -> List[str]:
46
    return [
47
48
        s.rfilename
        for s in info.siblings
49
50
51
52
        if s.rfilename.endswith(extension)
        and len(s.rfilename.split("/")) == 1
        and "arguments" not in s.rfilename
        and "args" not in s.rfilename
53
        and "training" not in s.rfilename
54
    ]
55
56


57
58
59
60
61
def _weight_files_from_dir(d: Path, extension: str) -> List[str]:
    # os.walk: do not iterate, just scan for depth 1, not recursively
    # see _weight_hub_files_from_model_info, that's also what is
    # done there with the len(s.rfilename.split("/")) == 1 condition
    root, _, files = next(os.walk(str(d)))
62
    filenames = [
63
        os.path.join(root, f)
64
65
66
67
68
69
        for f in files
        if f.endswith(extension)
        and "arguments" not in f
        and "args" not in f
        and "adapter" not in f
        and "training" not in f
xuxzh1's avatar
last  
xuxzh1 committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    ]
    return filenames


def _adapter_weight_files_from_dir(d: Path, extension: str) -> List[str]:
    # os.walk: do not iterate, just scan for depth 1, not recursively
    # see _weight_files_from_dir, that's also what is done there
    root, _, files = next(os.walk(str(d)))
    filenames = [
        os.path.join(root, f)
        for f in files
        if f.endswith(extension)
        and "arguments" not in f
        and "args" not in f
        and "training" not in f
    ]
    return filenames


def _adapter_config_files_from_dir(d: Path) -> List[str]:
    # os.walk: do not iterate, just scan for depth 1, not recursively
    # see _weight_files_from_dir, that's also what is done there
    root, _, files = next(os.walk(str(d)))
    filenames = [
        os.path.join(root, f)
        for f in files
        if f.endswith(".json") and "arguments" not in f and "args" not in f
97
    ]
98
99
100
    return filenames


101
102
103
def _get_cached_revision_directory(
    model_id: str, revision: Optional[str]
) -> Optional[Path]:
104
105
106
    if revision is None:
        revision = "main"

107
    repo_cache = Path(HUGGINGFACE_HUB_CACHE) / Path(
108
109
        file_download.repo_folder_name(repo_id=model_id, repo_type="model")
    )
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

    if not repo_cache.is_dir():
        # No cache for this model
        return None

    refs_dir = repo_cache / "refs"
    snapshots_dir = repo_cache / "snapshots"

    # Resolve refs (for instance to convert main to the associated commit sha)
    if refs_dir.is_dir():
        revision_file = refs_dir / revision
        if revision_file.exists():
            with revision_file.open() as f:
                revision = f.read()

    # Check if revision folder exists
    if not snapshots_dir.exists():
        return None
    cached_shas = os.listdir(snapshots_dir)
    if revision not in cached_shas:
        # No cache for this revision and we won't try to return a random revision
        return None

133
134
135
136
    return snapshots_dir / revision


def weight_hub_files(
137
    model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
) -> List[str]:
    """Get the weights filenames on the hub"""
    api = HfApi()

    if HF_HUB_OFFLINE:
        filenames = _cached_weight_files(model_id, revision, extension)
    else:
        # Online case, fetch model info from the Hub
        info = api.model_info(model_id, revision=revision)
        filenames = _weight_hub_files_from_model_info(info, extension)

    if not filenames:
        raise EntryNotFoundError(
            f"No {extension} weights found for model {model_id} and revision {revision}.",
            None,
        )

    return filenames


def try_to_load_from_cache(
    model_id: str, revision: Optional[str], filename: str
) -> Optional[Path]:
    """Try to load a file from the Hugging Face cache"""

    d = _get_cached_revision_directory(model_id, revision)
    if not d:
        return None

167
    # Check if file exists in cache
168
    cached_file = d / filename
169
170
171
172
173
174
175
    return cached_file if cached_file.is_file() else None


def weight_files(
    model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[Path]:
    """Get the local files"""
176
    # Local model
177
178
179
    d = Path(model_id)
    if d.exists() and d.is_dir():
        local_files = _weight_files_from_dir(d, extension)
180
181
182
183
        if not local_files:
            raise FileNotFoundError(
                f"No local weights found in {model_id} with extension {extension}"
            )
184
        return [Path(f) for f in local_files]
185

186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    try:
        filenames = weight_hub_files(model_id, revision, extension)
    except EntryNotFoundError as e:
        if extension != ".safetensors":
            raise e
        # Try to see if there are pytorch weights
        pt_filenames = weight_hub_files(model_id, revision, extension=".bin")
        # Change pytorch extension to safetensors extension
        # It is possible that we have safetensors weights locally even though they are not on the
        # hub if we converted weights locally without pushing them
        filenames = [
            f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames
        ]

    if WEIGHTS_CACHE_OVERRIDE is not None:
        files = []
        for filename in filenames:
            p = Path(WEIGHTS_CACHE_OVERRIDE) / filename
            if not p.exists():
205
                raise FileNotFoundError(
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
                    f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}."
                )
            files.append(p)
        return files

    files = []
    for filename in filenames:
        cache_file = try_to_load_from_cache(
            model_id, revision=revision, filename=filename
        )
        if cache_file is None:
            raise LocalEntryNotFoundError(
                f"File {filename} of model {model_id} not found in "
                f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
                f"Please run `text-generation-server download-weights {model_id}` first."
            )
        files.append(cache_file)

    return files


def download_weights(
    filenames: List[str], model_id: str, revision: Optional[str] = None
) -> List[Path]:
    """Download the safetensors files from the hub"""

232
233
    def download_file(fname, tries=5, backoff: int = 5):
        local_file = try_to_load_from_cache(model_id, revision, fname)
234
        if local_file is not None:
235
            logger.info(f"File {fname} already present in cache.")
236
            return Path(local_file)
237

238
        for idx in range(tries):
239
            try:
240
241
                logger.info(f"Download file: {fname}")
                stime = time.time()
242
                local_file = hf_hub_download(
243
                    filename=fname,
244
245
                    repo_id=model_id,
                    revision=revision,
246
                    local_files_only=HF_HUB_OFFLINE,
247
248
                )
                logger.info(
249
                    f"Downloaded {local_file} in {timedelta(seconds=int(time.time() - stime))}."
250
251
252
                )
                return Path(local_file)
            except Exception as e:
253
                if idx + 1 == tries:
254
255
                    raise e
                logger.error(e)
256
257
                logger.info(f"Retrying in {backoff} seconds")
                time.sleep(backoff)
258
                logger.info(f"Retry {idx + 1}/{tries - 1}")
259
260
261
262

    # We do this instead of using tqdm because we want to parse the logs with the launcher
    start_time = time.time()
    files = []
263
264
265
    for i, filename in enumerate(filenames):
        file = download_file(filename)

266
        elapsed = timedelta(seconds=int(time.time() - start_time))
267
        remaining = len(filenames) - (i + 1)
268
        eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0
269

270
271
        logger.info(f"Download: [{i + 1}/{len(filenames)}] -- ETA: {eta}")
        files.append(file)
272

273
    return files