tensor_parallel.py 8.85 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
import torch
from torch.nn import functional as F
3
from typing import Iterable, List
Nicolas Patry's avatar
Nicolas Patry committed
4
from text_generation_server.layers.linear import get_linear, FastLinear
Nicolas Patry's avatar
Nicolas Patry committed
5
from text_generation_server.utils.import_utils import SYSTEM
Wang, Yi's avatar
Wang, Yi committed
6

Nicolas Patry's avatar
Nicolas Patry committed
7
if SYSTEM == "ipex":
Wang, Yi's avatar
Wang, Yi committed
8
    import intel_extension_for_pytorch as ipex
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27


class LayerConcat(torch.nn.Module):
    """
    Apply multiple layers to the input and concatenate their
    outputs.
    """

    def __init__(self, layers: Iterable[torch.nn.Module], dim: int = -1):
        """
        `dim` is the dimension along which layer outputs are concatenated.
        """
        super().__init__()
        self.layers = layers
        self.dim = dim

    def forward(self, x: torch.Tensor):
        outputs = [layer(x) for layer in self.layers]
        return torch.cat(outputs, self.dim)
Nicolas Patry's avatar
Nicolas Patry committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46


class SuperLayer(torch.nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
    def __init__(self, linear, process_group, should_gather: bool):
        super().__init__(linear)
        self.process_group = process_group
        self.should_gather = should_gather

    @staticmethod
    def load(config, prefix: str, weights):
47
48
49
50
51
        if config.quantize == "exl2":
            try:
                # If the piece and LM head embeddings are shared, we have
                # non-quantized weights...
                weight = weights.get_tensor(f"{prefix}.weight")
52
            except Exception:
53
                # ...otherwise they are quantized.
54
                weight = weights.get_weights_col(prefix)
55
56
            should_gather = weights.process_group.size() > 1
        elif weights.process_group.size() > 1:
Nicolas Patry's avatar
Nicolas Patry committed
57
58
59
60
61
62
63
64
65
66
67
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False
xuxzh1's avatar
xuxzh1 committed
68
69
70
71
        
        if config.model_type == "baichuan":
            weight = F.normalize(weight)
        
Nicolas Patry's avatar
Nicolas Patry committed
72
        return TensorParallelHead(
73
            get_linear(weight, bias=None),
Nicolas Patry's avatar
Nicolas Patry committed
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
            process_group=weights.process_group,
            should_gather=should_gather,
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        if not self.should_gather:
            return super().forward(input)

        world_size = self.process_group.size()
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
            out_dim = self.linear.weight.shape[0]

            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T

            torch.mm(input, self.linear.weight.T, out=local_out)
Nicolas Patry's avatar
Nicolas Patry committed
96
            if SYSTEM == "ipex":
Wang, Yi's avatar
Wang, Yi committed
97
98
99
100
101
102
103
                ipex.distributed.all_gather_into_tensor(
                    world_out, gather_input, group=self.process_group
                )
            else:
                torch.distributed.all_gather_into_tensor(
                    world_out, gather_input, group=self.process_group
                )
Nicolas Patry's avatar
Nicolas Patry committed
104
105
106
107
108
109
110
111
112

            if input.shape[0] == 1:
                return world_out
            return world_out.T

        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
Nicolas Patry's avatar
Nicolas Patry committed
113
        if SYSTEM == "ipex":
Wang, Yi's avatar
Wang, Yi committed
114
115
116
            ipex.distributed.all_gather(world_output, output, group=self.process_group)
        else:
            torch.distributed.all_gather(world_output, output, group=self.process_group)
Nicolas Patry's avatar
Nicolas Patry committed
117
118
119
120
121
122
123
124
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
    def load_gate_up(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
125
        weight = weights.get_weights_col_packed_gate_up(prefix)
Nicolas Patry's avatar
Nicolas Patry committed
126
127
128
129
        if bias:
            raise NotImplementedError("packed_gate_up only implemented without bias")
        else:
            bias = None
130
        linear = get_linear(weight, bias)
Nicolas Patry's avatar
Nicolas Patry committed
131
132
133
        return cls(linear)

    @classmethod
134
135
136
137
138
139
140
141
142
    def load_qkv(
        cls,
        config,
        prefix: str,
        weights,
        bias: bool,
        num_heads: int,
        num_key_value_heads: int,
    ):
Nicolas Patry's avatar
Nicolas Patry committed
143
        """Specific method when the QKV was joined after the fact"""
144
145
146
147
148
        weight = weights.get_weights_col_packed_qkv(
            prefix,
            num_heads=num_heads,
            num_key_value_heads=num_key_value_heads,
        )
Nicolas Patry's avatar
Nicolas Patry committed
149
150
151
152
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
153
        linear = get_linear(weight, bias)
Nicolas Patry's avatar
Nicolas Patry committed
154
155
156
157
        return cls(linear)

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
158
        weight = weights.get_weights_col(prefix)
Nicolas Patry's avatar
Nicolas Patry committed
159
        if bias:
160
            bias = weights.get_sharded(f"{prefix}.bias", dim=0)
Nicolas Patry's avatar
Nicolas Patry committed
161
162
        else:
            bias = None
163
        linear = get_linear(weight, bias)
Nicolas Patry's avatar
Nicolas Patry committed
164
165
        return cls(linear)

166
167
168
169
170
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
        if config.quantize == "exl2":
            linears = []
            for prefix in prefixes:
171
                weight = weights.get_weights_col(prefix)
172
                b = weights.get_tensor(f"{prefix}.bias") if bias else None
173
                linears.append(get_linear(weight, b))
174
175
            linear = LayerConcat(linears)
        else:
176
            weight = weights.get_multi_weights_col(prefixes, dim=dim)
177
178
179
180
181
            if bias:
                b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
                bias = torch.cat(b, dim=dim)
            else:
                bias = None
182
            linear = get_linear(weight, bias)
183
184
        return cls(linear)

Nicolas Patry's avatar
Nicolas Patry committed
185
186
187
188
189
190
191
192

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
        self.process_group = process_group

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
193
        weight = weights.get_weights_row(prefix)
Nicolas Patry's avatar
Nicolas Patry committed
194
195
196
197
198
199
200

        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
201
            get_linear(weight, bias),
Nicolas Patry's avatar
Nicolas Patry committed
202
203
204
205
206
207
            process_group=weights.process_group,
        )

    def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
        out = super().forward(input)
        if self.process_group.size() > 1 and reduce:
Nicolas Patry's avatar
Nicolas Patry committed
208
            if SYSTEM == "ipex":
Wang, Yi's avatar
Wang, Yi committed
209
210
211
                ipex.distributed.all_reduce(out, group=self.process_group)
            else:
                torch.distributed.all_reduce(out, group=self.process_group)
Nicolas Patry's avatar
Nicolas Patry committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
        return out


class TensorParallelEmbedding(torch.nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = (num_embeddings + world_size - 1) // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = weight.shape[
            0
        ]  # Usually block_size, might be less in non even vocab_size.
        self.process_group = weights.process_group
        self.reduce = reduce

        """Additional 0 entry used for masking"""
        self.weight = torch.nn.Parameter(F.pad(weight, (0, 0, 0, 1)))

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
        out = torch.nn.functional.embedding(input, self.weight)
        if self.reduce and self.process_group.size() > 1:
Nicolas Patry's avatar
Nicolas Patry committed
248
            if SYSTEM == "ipex":
Wang, Yi's avatar
Wang, Yi committed
249
250
251
                ipex.distributed.all_reduce(out, group=self.process_group)
            else:
                torch.distributed.all_reduce(out, group=self.process_group)
Nicolas Patry's avatar
Nicolas Patry committed
252
        return out