tensor_parallel.py 9.16 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
import torch
from torch.nn import functional as F
3
from typing import Iterable, List
Nicolas Patry's avatar
Nicolas Patry committed
4
from text_generation_server.layers.linear import get_linear, FastLinear
5
from text_generation_server.layers.exl2 import Exl2Weight
Nicolas Patry's avatar
Nicolas Patry committed
6
from text_generation_server.utils.import_utils import SYSTEM
Wang, Yi's avatar
Wang, Yi committed
7

Nicolas Patry's avatar
Nicolas Patry committed
8
if SYSTEM == "ipex":
Wang, Yi's avatar
Wang, Yi committed
9
    import intel_extension_for_pytorch as ipex
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28


class LayerConcat(torch.nn.Module):
    """
    Apply multiple layers to the input and concatenate their
    outputs.
    """

    def __init__(self, layers: Iterable[torch.nn.Module], dim: int = -1):
        """
        `dim` is the dimension along which layer outputs are concatenated.
        """
        super().__init__()
        self.layers = layers
        self.dim = dim

    def forward(self, x: torch.Tensor):
        outputs = [layer(x) for layer in self.layers]
        return torch.cat(outputs, self.dim)
Nicolas Patry's avatar
Nicolas Patry committed
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47


class SuperLayer(torch.nn.Module):
    def __init__(self, linear):
        super().__init__()
        self.linear = linear

    def forward(self, x):
        return self.linear.forward(x)


class TensorParallelHead(SuperLayer):
    def __init__(self, linear, process_group, should_gather: bool):
        super().__init__(linear)
        self.process_group = process_group
        self.should_gather = should_gather

    @staticmethod
    def load(config, prefix: str, weights):
48
49
50
51
52
53
54
        if config.quantize == "exl2":
            try:
                # If the piece and LM head embeddings are shared, we have
                # non-quantized weights...
                weight = weights.get_tensor(f"{prefix}.weight")
            except:
                # ...otherwise they are quantized.
55
                weight = weights.get_weights_col(prefix)
56
57
            should_gather = weights.process_group.size() > 1
        elif weights.process_group.size() > 1:
Nicolas Patry's avatar
Nicolas Patry committed
58
59
60
61
62
63
64
65
66
67
68
69
70
            try:
                weight = weights.get_sharded(f"{prefix}.weight", dim=0)
                should_gather = True
            except AssertionError:
                # If the vocab size is not divisible by number of shards
                # just load the entire thing.
                weight = weights.get_tensor(f"{prefix}.weight")
                should_gather = False
        else:
            weight = weights.get_tensor(f"{prefix}.weight")
            should_gather = False

        # GPTQ,AWQ,EETQ don't quantize heads (nor embeddings)
71
        if config.quantize in ["gptq", "awq", "eetq", "marlin"]:
Nicolas Patry's avatar
Nicolas Patry committed
72
            quantize = None
73
74
75
        # See above, exl2 LM head can be quantized or not.
        elif config.quantize == "exl2" and not isinstance(weight, Exl2Weight):
            quantize = None
Nicolas Patry's avatar
Nicolas Patry committed
76
77
        else:
            quantize = config.quantize
78

Nicolas Patry's avatar
Nicolas Patry committed
79
        return TensorParallelHead(
80
            get_linear(weight, bias=None),
Nicolas Patry's avatar
Nicolas Patry committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
            process_group=weights.process_group,
            should_gather=should_gather,
        )

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        if not self.should_gather:
            return super().forward(input)

        world_size = self.process_group.size()
        if len(input.shape) == 2 and isinstance(self.linear, FastLinear):
            out_dim = self.linear.weight.shape[0]

            if input.shape[0] == 1:
                world_out = input.new_empty(1, out_dim * world_size)
                local_out = input.new_empty(1, out_dim)
                gather_input = local_out
            else:
                world_out = input.new_empty(out_dim * world_size, input.shape[0])
                gather_input = input.new_empty(out_dim, input.shape[0])
                local_out = gather_input.T

            torch.mm(input, self.linear.weight.T, out=local_out)
Nicolas Patry's avatar
Nicolas Patry committed
103
            if SYSTEM == "ipex":
Wang, Yi's avatar
Wang, Yi committed
104
105
106
107
108
109
110
                ipex.distributed.all_gather_into_tensor(
                    world_out, gather_input, group=self.process_group
                )
            else:
                torch.distributed.all_gather_into_tensor(
                    world_out, gather_input, group=self.process_group
                )
Nicolas Patry's avatar
Nicolas Patry committed
111
112
113
114
115
116
117
118
119

            if input.shape[0] == 1:
                return world_out
            return world_out.T

        output = super().forward(input)
        world_output = [
            torch.empty_like(output) for _ in range(self.process_group.size())
        ]
Nicolas Patry's avatar
Nicolas Patry committed
120
        if SYSTEM == "ipex":
Wang, Yi's avatar
Wang, Yi committed
121
122
123
            ipex.distributed.all_gather(world_output, output, group=self.process_group)
        else:
            torch.distributed.all_gather(world_output, output, group=self.process_group)
Nicolas Patry's avatar
Nicolas Patry committed
124
125
126
127
128
129
130
131
        world_output = torch.cat(world_output, dim=-1)
        return world_output


class TensorParallelColumnLinear(SuperLayer):
    @classmethod
    def load_gate_up(cls, config, prefix: str, weights, bias: bool):
        """Specific method when the QKV was joined after the fact"""
132
        weight = weights.get_weights_col_packed_gate_up(prefix)
Nicolas Patry's avatar
Nicolas Patry committed
133
134
135
136
        if bias:
            raise NotImplementedError("packed_gate_up only implemented without bias")
        else:
            bias = None
137
        linear = get_linear(weight, bias)
Nicolas Patry's avatar
Nicolas Patry committed
138
139
140
        return cls(linear)

    @classmethod
141
142
143
144
145
146
147
148
149
    def load_qkv(
        cls,
        config,
        prefix: str,
        weights,
        bias: bool,
        num_heads: int,
        num_key_value_heads: int,
    ):
Nicolas Patry's avatar
Nicolas Patry committed
150
        """Specific method when the QKV was joined after the fact"""
151
152
153
154
155
        weight = weights.get_weights_col_packed_qkv(
            prefix,
            num_heads=num_heads,
            num_key_value_heads=num_key_value_heads,
        )
Nicolas Patry's avatar
Nicolas Patry committed
156
157
158
159
        if bias:
            raise NotImplementedError("packed_qkv only implemented for baichuan")
        else:
            bias = None
160
        linear = get_linear(weight, bias)
Nicolas Patry's avatar
Nicolas Patry committed
161
162
163
164
        return cls(linear)

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
165
        weight = weights.get_weights_col(prefix)
Nicolas Patry's avatar
Nicolas Patry committed
166
        if bias:
167
            bias = weights.get_sharded(f"{prefix}.bias", dim=0)
Nicolas Patry's avatar
Nicolas Patry committed
168
169
        else:
            bias = None
170
        linear = get_linear(weight, bias)
Nicolas Patry's avatar
Nicolas Patry committed
171
172
        return cls(linear)

173
174
175
176
177
    @classmethod
    def load_multi(cls, config, prefixes: List[str], weights, bias: bool, dim: int):
        if config.quantize == "exl2":
            linears = []
            for prefix in prefixes:
178
                weight = weights.get_weights_col(prefix)
179
                b = weights.get_tensor(f"{prefix}.bias") if bias else None
180
                linears.append(get_linear(weight, b))
181
182
            linear = LayerConcat(linears)
        else:
183
            weight = weights.get_multi_weights_col(prefixes, dim=dim)
184
185
186
187
188
            if bias:
                b = [weights.get_sharded(f"{p}.bias", dim=0) for p in prefixes]
                bias = torch.cat(b, dim=dim)
            else:
                bias = None
189
            linear = get_linear(weight, bias)
190
191
        return cls(linear)

Nicolas Patry's avatar
Nicolas Patry committed
192
193
194
195
196
197
198
199

class TensorParallelRowLinear(SuperLayer):
    def __init__(self, linear, process_group):
        super().__init__(linear)
        self.process_group = process_group

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
200
        weight = weights.get_weights_row(prefix)
Nicolas Patry's avatar
Nicolas Patry committed
201
202
203
204
205
206
207

        if bias and weights.process_group.rank() == 0:
            # Rank is only on the first rank process
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(
208
            get_linear(weight, bias),
Nicolas Patry's avatar
Nicolas Patry committed
209
210
211
212
213
214
            process_group=weights.process_group,
        )

    def forward(self, input: torch.Tensor, reduce: bool = True) -> torch.Tensor:
        out = super().forward(input)
        if self.process_group.size() > 1 and reduce:
Nicolas Patry's avatar
Nicolas Patry committed
215
            if SYSTEM == "ipex":
Wang, Yi's avatar
Wang, Yi committed
216
217
218
                ipex.distributed.all_reduce(out, group=self.process_group)
            else:
                torch.distributed.all_reduce(out, group=self.process_group)
Nicolas Patry's avatar
Nicolas Patry committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        return out


class TensorParallelEmbedding(torch.nn.Module):
    def __init__(self, prefix: str, weights, reduce=True):
        super().__init__()
        weight = weights.get_partial_sharded(f"{prefix}.weight", dim=0)
        num_embeddings = weights.get_shape(f"{prefix}.weight")[0]

        process_group = weights.process_group

        world_size = process_group.size()
        rank = process_group.rank()

        block_size = (num_embeddings + world_size - 1) // world_size
        self.min_id = rank * block_size
        self.max_id = min(num_embeddings, (rank + 1) * block_size)
        self.null_idx = weight.shape[
            0
        ]  # Usually block_size, might be less in non even vocab_size.
        self.process_group = weights.process_group
        self.reduce = reduce

        """Additional 0 entry used for masking"""
        self.weight = torch.nn.Parameter(F.pad(weight, (0, 0, 0, 1)))

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        # default all out of bounds values to `self.null_idx` that will then be mapped to 0
        # translate for [0, self.max_id - self.min_id[
        input = torch.where(
            (self.min_id > input) | (input >= self.max_id),
            self.null_idx,
            input - self.min_id,
        )
        out = torch.nn.functional.embedding(input, self.weight)
        if self.reduce and self.process_group.size() > 1:
Nicolas Patry's avatar
Nicolas Patry committed
255
            if SYSTEM == "ipex":
Wang, Yi's avatar
Wang, Yi committed
256
257
258
                ipex.distributed.all_reduce(out, group=self.process_group)
            else:
                torch.distributed.all_reduce(out, group=self.process_group)
Nicolas Patry's avatar
Nicolas Patry committed
259
        return out