server.rs 38.9 KB
Newer Older
1
/// HTTP Server logic
2
use crate::health::Health;
3
4
use crate::infer::{InferError, InferResponse, InferStreamResponse};
use crate::validation::ValidationError;
5
use crate::{
6
7
8
9
    BestOfSequence, ChatCompletion, ChatCompletionChoice, ChatCompletionChunk, ChatCompletionDelta,
    ChatRequest, CompatGenerateRequest, Details, ErrorResponse, FinishReason, GenerateParameters,
    GenerateRequest, GenerateResponse, HubModelInfo, HubTokenizerConfig, Infer, Info, Message,
    PrefillToken, SimpleToken, StreamDetails, StreamResponse, Token, TokenizeResponse, Validation,
10
};
Olivier Dehaene's avatar
Olivier Dehaene committed
11
use axum::extract::Extension;
12
use axum::http::{HeaderMap, Method, StatusCode};
13
use axum::response::sse::{Event, KeepAlive, Sse};
14
use axum::response::{IntoResponse, Response};
Olivier Dehaene's avatar
Olivier Dehaene committed
15
use axum::routing::{get, post};
16
use axum::{http, Json, Router};
Nicolas Patry's avatar
Nicolas Patry committed
17
use axum_tracing_opentelemetry::middleware::OtelAxumLayer;
18
use futures::stream::StreamExt;
19
use futures::Stream;
20
use metrics_exporter_prometheus::{Matcher, PrometheusBuilder, PrometheusHandle};
21
use std::convert::Infallible;
Olivier Dehaene's avatar
Olivier Dehaene committed
22
use std::net::SocketAddr;
23
24
use std::sync::atomic::AtomicBool;
use std::sync::Arc;
25
use text_generation_client::{ShardInfo, ShardedClient};
Olivier Dehaene's avatar
Olivier Dehaene committed
26
use tokenizers::Tokenizer;
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
27
use tokio::signal;
Olivier Dehaene's avatar
Olivier Dehaene committed
28
use tokio::time::Instant;
29
use tower_http::cors::{AllowOrigin, CorsLayer};
30
use tracing::{info_span, instrument, Instrument};
31
32
use utoipa::OpenApi;
use utoipa_swagger_ui::SwaggerUi;
Olivier Dehaene's avatar
Olivier Dehaene committed
33

34
35
/// Generate tokens if `stream == false` or a stream of token if `stream == true`
#[utoipa::path(
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
post,
tag = "Text Generation Inference",
path = "/",
request_body = CompatGenerateRequest,
responses(
(status = 200, description = "Generated Text",
content(
("application/json" = GenerateResponse),
("text/event-stream" = StreamResponse),
)),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
55
)]
56
#[instrument(skip(infer, req))]
57
async fn compat_generate(
58
    Extension(default_return_full_text): Extension<bool>,
59
    infer: Extension<Infer>,
60
    Json(mut req): Json<CompatGenerateRequest>,
61
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
62
63
    // default return_full_text given the pipeline_tag
    if req.parameters.return_full_text.is_none() {
64
        req.parameters.return_full_text = Some(default_return_full_text)
65
66
    }

67
68
69
70
71
72
    // switch on stream
    if req.stream {
        Ok(generate_stream(infer, Json(req.into()))
            .await
            .into_response())
    } else {
73
        let (headers, Json(generation)) = generate(infer, Json(req.into())).await?;
74
        // wrap generation inside a Vec to match api-inference
75
        Ok((headers, Json(vec![generation])).into_response())
76
77
78
    }
}

79
80
/// Text Generation Inference endpoint info
#[utoipa::path(
81
82
83
84
get,
tag = "Text Generation Inference",
path = "/info",
responses((status = 200, description = "Served model info", body = Info))
85
86
)]
#[instrument]
87
88
async fn get_model_info(info: Extension<Info>) -> Json<Info> {
    Json(info.0)
89
90
}

91
#[utoipa::path(
92
93
94
95
96
97
98
99
get,
tag = "Text Generation Inference",
path = "/health",
responses(
(status = 200, description = "Everything is working fine"),
(status = 503, description = "Text generation inference is down", body = ErrorResponse,
example = json ! ({"error": "unhealthy", "error_type": "healthcheck"})),
)
100
101
)]
#[instrument(skip(health))]
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
102
/// Health check method
103
104
105
106
107
108
109
110
111
112
113
async fn health(mut health: Extension<Health>) -> Result<(), (StatusCode, Json<ErrorResponse>)> {
    match health.check().await {
        true => Ok(()),
        false => Err((
            StatusCode::SERVICE_UNAVAILABLE,
            Json(ErrorResponse {
                error: "unhealthy".to_string(),
                error_type: "healthcheck".to_string(),
            }),
        )),
    }
Olivier Dehaene's avatar
Olivier Dehaene committed
114
115
}

116
117
/// Generate tokens
#[utoipa::path(
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
post,
tag = "Text Generation Inference",
path = "/generate",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = GenerateResponse),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"})),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"})),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"})),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"})),
)
133
)]
134
#[instrument(
135
136
skip_all,
fields(
137
parameters = ? req.parameters,
138
139
140
141
142
143
144
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
145
)]
Olivier Dehaene's avatar
Olivier Dehaene committed
146
async fn generate(
147
    infer: Extension<Infer>,
148
    Json(req): Json<GenerateRequest>,
149
) -> Result<(HeaderMap, Json<GenerateResponse>), (StatusCode, Json<ErrorResponse>)> {
150
    let span = tracing::Span::current();
151
    let start_time = Instant::now();
152
    metrics::increment_counter!("tgi_request_count");
153

154
    tracing::debug!("Input: {}", req.inputs);
155

156
    let compute_characters = req.inputs.chars().count();
157
    let mut add_prompt = None;
158
159
    if req.parameters.return_full_text.unwrap_or(false) {
        add_prompt = Some(req.inputs.clone());
160
161
    }

Nicolas Patry's avatar
Nicolas Patry committed
162
    let details: bool = req.parameters.details || req.parameters.decoder_input_details;
163
164

    // Inference
165
    let (response, best_of_responses) = match req.parameters.best_of {
166
        Some(best_of) if best_of > 1 => {
167
            let (response, best_of_responses) = infer.generate_best_of(req, best_of).await?;
168
169
            (response, Some(best_of_responses))
        }
170
        _ => (infer.generate(req).await?, None),
171
    };
Olivier Dehaene's avatar
Olivier Dehaene committed
172

OlivierDehaene's avatar
OlivierDehaene committed
173
    // Token details
174
    let input_length = response._input_length;
OlivierDehaene's avatar
OlivierDehaene committed
175
    let details = match details {
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        true => {
            // convert best_of_responses
            let best_of_sequences = best_of_responses.map(|responses: Vec<InferResponse>| {
                responses
                    .into_iter()
                    .map(|response: InferResponse| {
                        // Add prompt if return_full_text
                        let mut output_text = response.generated_text.text;
                        if let Some(prompt) = &add_prompt {
                            output_text = prompt.clone() + &output_text;
                        }

                        BestOfSequence {
                            generated_text: output_text,
                            finish_reason: FinishReason::from(
                                response.generated_text.finish_reason,
                            ),
                            generated_tokens: response.generated_text.generated_tokens,
                            prefill: response.prefill,
                            tokens: response.tokens,
Nicolas Patry's avatar
Nicolas Patry committed
196
                            top_tokens: response.top_tokens,
197
198
199
200
201
202
203
204
205
206
207
208
209
                            seed: response.generated_text.seed,
                        }
                    })
                    .collect()
            });

            Some(Details {
                finish_reason: FinishReason::from(response.generated_text.finish_reason),
                generated_tokens: response.generated_text.generated_tokens,
                prefill: response.prefill,
                tokens: response.tokens,
                seed: response.generated_text.seed,
                best_of_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
210
                top_tokens: response.top_tokens,
211
212
            })
        }
OlivierDehaene's avatar
OlivierDehaene committed
213
214
215
        false => None,
    };

216
217
218
219
    // Timings
    let total_time = start_time.elapsed();
    let validation_time = response.queued - start_time;
    let queue_time = response.start - response.queued;
220
221
    let inference_time = Instant::now() - response.start;
    let time_per_token = inference_time / response.generated_text.generated_tokens;
222

223
224
225
226
227
228
229
230
    // Tracing metadata
    span.record("total_time", format!("{total_time:?}"));
    span.record("validation_time", format!("{validation_time:?}"));
    span.record("queue_time", format!("{queue_time:?}"));
    span.record("inference_time", format!("{inference_time:?}"));
    span.record("time_per_token", format!("{time_per_token:?}"));
    span.record("seed", format!("{:?}", response.generated_text.seed));

231
232
    // Headers
    let mut headers = HeaderMap::new();
233
234
235
236
237
238
239
240
241
    headers.insert("x-compute-type", "gpu+optimized".parse().unwrap());
    headers.insert(
        "x-compute-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
242
243
244
245
246
247
248
249
250
251
252
    headers.insert(
        "x-total-time",
        total_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-validation-time",
        validation_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-queue-time",
        queue_time.as_millis().to_string().parse().unwrap(),
Olivier Dehaene's avatar
Olivier Dehaene committed
253
    );
254
255
256
257
258
259
260
261
    headers.insert(
        "x-inference-time",
        inference_time.as_millis().to_string().parse().unwrap(),
    );
    headers.insert(
        "x-time-per-token",
        time_per_token.as_millis().to_string().parse().unwrap(),
    );
262
263
264
265
266
    headers.insert("x-prompt-tokens", input_length.into());
    headers.insert(
        "x-generated-tokens",
        response.generated_text.generated_tokens.into(),
    );
267

268
269
    // Metrics
    metrics::increment_counter!("tgi_request_success");
270
271
272
273
274
275
276
277
278
279
280
281
282
283
    metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_validation_duration",
        validation_time.as_secs_f64()
    );
    metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
    metrics::histogram!(
        "tgi_request_inference_duration",
        inference_time.as_secs_f64()
    );
    metrics::histogram!(
        "tgi_request_mean_time_per_token_duration",
        time_per_token.as_secs_f64()
    );
284
285
286
287
288
    metrics::histogram!(
        "tgi_request_generated_tokens",
        response.generated_text.generated_tokens as f64
    );

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
289
    // Send response
290
291
292
293
294
    let mut output_text = response.generated_text.text;
    if let Some(prompt) = add_prompt {
        output_text = prompt + &output_text;
    }

295
296
    tracing::debug!("Output: {}", output_text);
    tracing::info!("Success");
297

298
    let response = GenerateResponse {
299
        generated_text: output_text,
OlivierDehaene's avatar
OlivierDehaene committed
300
        details,
301
    };
302
    Ok((headers, Json(response)))
Olivier Dehaene's avatar
Olivier Dehaene committed
303
304
}

Yannic Kilcher's avatar
Yannic Kilcher committed
305
/// Generate a stream of token using Server-Sent Events
306
#[utoipa::path(
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
post,
tag = "Text Generation Inference",
path = "/generate_stream",
request_body = GenerateRequest,
responses(
(status = 200, description = "Generated Text", body = StreamResponse,
content_type = "text/event-stream"),
(status = 424, description = "Generation Error", body = ErrorResponse,
example = json ! ({"error": "Request failed during generation"}),
content_type = "text/event-stream"),
(status = 429, description = "Model is overloaded", body = ErrorResponse,
example = json ! ({"error": "Model is overloaded"}),
content_type = "text/event-stream"),
(status = 422, description = "Input validation error", body = ErrorResponse,
example = json ! ({"error": "Input validation error"}),
content_type = "text/event-stream"),
(status = 500, description = "Incomplete generation", body = ErrorResponse,
example = json ! ({"error": "Incomplete generation"}),
content_type = "text/event-stream"),
)
327
)]
328
#[instrument(
329
330
skip_all,
fields(
331
parameters = ? req.parameters,
332
333
334
335
336
337
338
total_time,
validation_time,
queue_time,
inference_time,
time_per_token,
seed,
)
339
340
)]
async fn generate_stream(
341
342
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
343
344
345
346
) -> (
    HeaderMap,
    Sse<impl Stream<Item = Result<Event, Infallible>>>,
) {
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    let on_message_callback = |stream_token: StreamResponse| {
        let event = Event::default();
        event.json_data(stream_token).unwrap()
    };
    let (headers, response_stream) =
        generate_stream_internal(infer, Json(req), on_message_callback).await;
    let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
    (headers, sse)
}

async fn generate_stream_internal(
    infer: Infer,
    Json(req): Json<GenerateRequest>,
    on_message_callback: impl Fn(StreamResponse) -> Event,
) -> (HeaderMap, impl Stream<Item = Result<Event, Infallible>>) {
362
363
    let span = tracing::Span::current();
    let start_time = Instant::now();
364
    metrics::increment_counter!("tgi_request_count");
365

366
    tracing::debug!("Input: {}", req.inputs);
367

368
    let compute_characters = req.inputs.chars().count();
369
370
371
372
373
374
375

    let mut headers = HeaderMap::new();
    headers.insert("x-compute-type", "gpu+optimized".parse().unwrap());
    headers.insert(
        "x-compute-characters",
        compute_characters.to_string().parse().unwrap(),
    );
376
    headers.insert("X-Accel-Buffering", "no".parse().unwrap());
377

378
379
380
381
    let stream = async_stream::stream! {
        // Inference
        let mut end_reached = false;
        let mut error = false;
382
383

        let mut add_prompt = None;
384
385
        if req.parameters.return_full_text.unwrap_or(false) {
            add_prompt = Some(req.inputs.clone());
386
        }
387
        let details = req.parameters.details;
388

389
        let best_of = req.parameters.best_of.unwrap_or(1);
390
391
392
393
394
        if best_of != 1 {
            let err = InferError::from(ValidationError::BestOfStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
395
        } else if req.parameters.decoder_input_details {
396
397
398
399
400
            let err = InferError::from(ValidationError::PrefillDetailsStream);
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            yield Ok(Event::from(err));
        } else {
401
            match infer.generate_stream(req).instrument(info_span!(parent: &span, "async_stream")).await {
402
                // Keep permit as long as generate_stream lives
403
                Ok((_permit, _input_length, mut response_stream)) => {
404
                    let mut index = 0;
405
406
                    // Server-Sent Event stream
                    while let Some(response) = response_stream.next().await {
407
                        index += 1;
408
409
410
411
412
413
                        match response {
                            Ok(response) => {
                                match response {
                                    // Prefill is ignored
                                    InferStreamResponse::Prefill(_) => {}
                                    // Yield event for every new token
Nicolas Patry's avatar
Nicolas Patry committed
414
415
416
417
                                    InferStreamResponse::Intermediate{
                                        token,
                                        top_tokens,
                                    } => {
418
419
                                        tracing::debug!(parent: &span, "Token: {:?}", token);

420
421
                                        // StreamResponse
                                        let stream_token = StreamResponse {
422
                                            index,
423
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
424
                                            top_tokens,
425
426
427
                                            generated_text: None,
                                            details: None,
                                        };
428
429
                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
430
                                    }
431
432
                                    // Yield event for last token and compute timings
                                    InferStreamResponse::End {
433
                                        token,
434
435
436
                                        generated_text,
                                        start,
                                        queued,
Nicolas Patry's avatar
Nicolas Patry committed
437
                                        top_tokens,
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
                                    } => {
                                        // Token details
                                        let details = match details {
                                            true => Some(StreamDetails {
                                                finish_reason: FinishReason::from(generated_text.finish_reason),
                                                generated_tokens: generated_text.generated_tokens,
                                                seed: generated_text.seed,
                                            }),
                                            false => None,
                                        };

                                        // Timings
                                        let total_time = start_time.elapsed();
                                        let validation_time = queued - start_time;
                                        let queue_time = start - queued;
                                        let inference_time = Instant::now() - start;
                                        let time_per_token = inference_time / generated_text.generated_tokens;

                                        // Tracing metadata
                                        span.record("total_time", format!("{total_time:?}"));
                                        span.record("validation_time", format!("{validation_time:?}"));
                                        span.record("queue_time", format!("{queue_time:?}"));
                                        span.record("inference_time", format!("{inference_time:?}"));
                                        span.record("time_per_token", format!("{time_per_token:?}"));
                                        span.record("seed", format!("{:?}", generated_text.seed));

                                        // Metrics
                                        metrics::increment_counter!("tgi_request_success");
466
467
468
469
470
                                        metrics::histogram!("tgi_request_duration", total_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_validation_duration", validation_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_queue_duration", queue_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_inference_duration", inference_time.as_secs_f64());
                                        metrics::histogram!("tgi_request_mean_time_per_token_duration", time_per_token.as_secs_f64());
471
472
473
474
475
476
477
478
479
480
                                        metrics::histogram!("tgi_request_generated_tokens", generated_text.generated_tokens as f64);

                                        // StreamResponse
                                        end_reached = true;

                                        let mut output_text = generated_text.text;
                                        if let Some(prompt) = add_prompt {
                                            output_text = prompt + &output_text;
                                        }

481
482
                                        tracing::debug!(parent: &span, "Output: {}", output_text);
                                        tracing::info!(parent: &span, "Success");
483

484
                                        let stream_token = StreamResponse {
485
                                            index,
486
                                            token,
Nicolas Patry's avatar
Nicolas Patry committed
487
                                            top_tokens,
488
489
490
491
                                            generated_text: Some(output_text),
                                            details
                                        };

492
493
494

                                        let event = on_message_callback(stream_token);
                                        yield Ok(event);
495
496
                                        break;
                                    }
497
498
                                }
                            }
499
500
501
502
503
504
                            // yield error
                            Err(err) => {
                                error = true;
                                yield Ok(Event::from(err));
                                break;
                            }
505
506
                        }
                    }
507
508
509
510
511
                },
                // yield error
                Err(err) => {
                    error = true;
                    yield Ok(Event::from(err));
512
                }
513
514
515
516
517
518
519
            }
            // Check if generation reached the end
            // Skip if we already sent an error
            if !end_reached && !error {
                let err = InferError::IncompleteGeneration;
                metrics::increment_counter!("tgi_request_failure", "err" => "incomplete");
                tracing::error!("{err}");
520
                yield Ok(Event::from(err));
521
522
523
524
            }
        }
    };

525
526
527
528
529
530
531
532
533
534
    (headers, stream)
}

/// Generate tokens
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/v1/chat/completions",
    request_body = ChatRequest,
    responses(
535
    (status = 200, description = "Generated Text", body = ChatCompletionChunk),
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
    (status = 424, description = "Generation Error", body = ErrorResponse,
    example = json ! ({"error": "Request failed during generation"})),
    (status = 429, description = "Model is overloaded", body = ErrorResponse,
    example = json ! ({"error": "Model is overloaded"})),
    (status = 422, description = "Input validation error", body = ErrorResponse,
    example = json ! ({"error": "Input validation error"})),
    (status = 500, description = "Incomplete generation", body = ErrorResponse,
    example = json ! ({"error": "Incomplete generation"})),
    )
    )]
#[instrument(
    skip_all,
    fields(
    // parameters = ? req.parameters,
    total_time,
    validation_time,
    queue_time,
    inference_time,
    time_per_token,
    seed,
    )
    )]
async fn chat_completions(
    Extension(infer): Extension<Infer>,
    Extension(info): Extension<Info>,
    Json(req): Json<ChatRequest>,
) -> Result<Response, (StatusCode, Json<ErrorResponse>)> {
    metrics::increment_counter!("tgi_request_count");

    let stream = req.stream;
    let max_new_tokens = req.max_tokens.or(Some(100));
    let repetition_penalty = req
        .frequency_penalty
        // rescale frequency_penalty from (-2.0, 2.0) to (0.0, 4.0)
        .map(|x| x + 2.0);
    let logprobs = req.logprobs.unwrap_or(false);
    let seed = req.seed;

    // apply chat template to flatten the request into a single input
575
    let inputs = match infer.apply_chat_template(req.messages) {
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
        Ok(inputs) => inputs,
        Err(err) => {
            metrics::increment_counter!("tgi_request_failure", "err" => "validation");
            tracing::error!("{err}");
            return Err((
                StatusCode::UNPROCESSABLE_ENTITY,
                Json(ErrorResponse {
                    error: err.to_string(),
                    error_type: err.error_type().to_string(),
                }),
            ));
        }
    };

    // build the request passing some parameters
    let generate_request = GenerateRequest {
        inputs: inputs.to_string(),
        parameters: GenerateParameters {
            best_of: None,
595
            temperature: req.temperature,
596
597
            repetition_penalty,
            top_k: None,
598
            top_p: req.top_p,
599
600
601
602
603
604
605
606
            typical_p: None,
            do_sample: true,
            max_new_tokens,
            return_full_text: None,
            stop: Vec::new(),
            truncate: None,
            watermark: false,
            details: true,
607
            decoder_input_details: !stream,
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
            seed,
            top_n_tokens: None,
        },
    };

    // static values that will be returned in all cases
    let model_id = info.model_id.clone();
    let system_fingerprint = format!("{}-{}", info.version, info.docker_label.unwrap_or("native"));

    // switch on stream
    if stream {
        // pass this callback to the stream generation and build the required event structure
        let on_message_callback = move |stream_token: StreamResponse| {
            let event = Event::default();

            let current_time = std::time::SystemTime::now()
                .duration_since(std::time::UNIX_EPOCH)
                .unwrap_or_else(|_| std::time::Duration::from_secs(0))
                .as_secs();

            event
                .json_data(ChatCompletionChunk::new(
                    model_id.clone(),
                    system_fingerprint.clone(),
                    stream_token.token.text,
                    current_time,
                    stream_token.index,
                    logprobs.then_some(stream_token.token.logprob),
                    stream_token.details.map(|d| d.finish_reason.to_string()),
                ))
                .map_or_else(
                    |e| {
                        println!("Failed to serialize ChatCompletionChunk: {:?}", e);
                        Event::default()
                    },
                    |data| data,
                )
        };

        let (headers, response_stream) =
            generate_stream_internal(infer, Json(generate_request), on_message_callback).await;
        let sse = Sse::new(response_stream).keep_alive(KeepAlive::default());
        Ok((headers, sse).into_response())
    } else {
        let (headers, Json(generation)) =
            generate(Extension(infer), Json(generate_request)).await?;

        let current_time = std::time::SystemTime::now()
            .duration_since(std::time::UNIX_EPOCH)
            .unwrap_or_else(|_| std::time::Duration::from_secs(0))
            .as_secs();

        // build the complete response object with the full text
        let response = ChatCompletion::new(
            model_id,
            system_fingerprint,
664
            generation.generated_text,
665
666
667
668
669
670
671
672
            current_time,
            generation.details.unwrap(),
            logprobs,
        );

        // wrap generation inside a Vec to match api-inference
        Ok((headers, Json(response)).into_response())
    }
673
674
}

675
676
677
678
679
/// Tokenize inputs
#[utoipa::path(
    post,
    tag = "Text Generation Inference",
    path = "/tokenize",
680
    request_body = GenerateRequest,
681
682
683
684
685
686
687
688
689
690
    responses(
    (status = 200, description = "Tokenized ids", body = TokenizeResponse),
    (status = 404, description = "No tokenizer found", body = ErrorResponse,
    example = json ! ({"error": "No fast tokenizer available"})),
    )
    )]
#[instrument(skip_all)]
async fn tokenize(
    Extension(infer): Extension<Infer>,
    Json(req): Json<GenerateRequest>,
691
) -> Result<Json<TokenizeResponse>, (StatusCode, Json<ErrorResponse>)> {
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
    let input = req.inputs.clone();
    let encoding = infer.tokenize(req).await?;
    if let Some(encoding) = encoding {
        let tokens: Vec<SimpleToken> = encoding
            .get_ids()
            .iter()
            .zip(encoding.get_offsets())
            .map(|(&id, &(start, stop))| {
                let text: String = input.chars().skip(start).take(stop - start).collect();
                SimpleToken {
                    id,
                    text,
                    start,
                    stop,
                }
            })
            .collect();
709
        Ok(Json(TokenizeResponse(tokens)))
710
711
712
713
714
715
716
717
718
719
720
    } else {
        Err((
            StatusCode::NOT_FOUND,
            Json(ErrorResponse {
                error: "No fast tokenizer or tokenizer.json for this model".to_string(),
                error_type: "no fast tokenizer".to_string(),
            }),
        ))
    }
}

721
722
/// Prometheus metrics scrape endpoint
#[utoipa::path(
723
724
725
726
get,
tag = "Text Generation Inference",
path = "/metrics",
responses((status = 200, description = "Prometheus Metrics", body = String))
727
728
729
730
731
)]
async fn metrics(prom_handle: Extension<PrometheusHandle>) -> String {
    prom_handle.render()
}

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
732
733
734
/// Serving method
#[allow(clippy::too_many_arguments)]
pub async fn run(
735
736
    model_info: HubModelInfo,
    shard_info: ShardInfo,
737
    compat_return_full_text: bool,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
738
    max_concurrent_requests: usize,
739
    max_best_of: usize,
740
    max_stop_sequences: usize,
Nicolas Patry's avatar
Nicolas Patry committed
741
    max_top_n_tokens: u32,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
742
    max_input_length: usize,
743
    max_total_tokens: usize,
744
    waiting_served_ratio: f32,
745
    max_batch_prefill_tokens: u32,
746
    max_batch_total_tokens: u32,
747
    max_waiting_tokens: usize,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
748
    client: ShardedClient,
749
    tokenizer: Option<Tokenizer>,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
750
751
    validation_workers: usize,
    addr: SocketAddr,
752
    allow_origin: Option<AllowOrigin>,
753
754
    ngrok: bool,
    ngrok_authtoken: Option<String>,
755
    ngrok_edge: Option<String>,
756
    tokenizer_config: HubTokenizerConfig,
757
    messages_api_enabled: bool,
758
) -> Result<(), axum::BoxError> {
759
760
761
    // OpenAPI documentation
    #[derive(OpenApi)]
    #[openapi(
762
763
764
765
766
767
    paths(
    health,
    get_model_info,
    compat_generate,
    generate,
    generate_stream,
768
769
    chat_completions,
    tokenize,
770
771
772
773
774
775
776
    metrics,
    ),
    components(
    schemas(
    Info,
    CompatGenerateRequest,
    GenerateRequest,
777
778
779
780
781
782
    ChatRequest,
    Message,
    ChatCompletionChoice,
    ChatCompletionDelta,
    ChatCompletionChunk,
    ChatCompletion,
783
784
785
786
    GenerateParameters,
    PrefillToken,
    Token,
    GenerateResponse,
787
788
    TokenizeResponse,
    SimpleToken,
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
    BestOfSequence,
    Details,
    FinishReason,
    StreamResponse,
    StreamDetails,
    ErrorResponse,
    )
    ),
    tags(
    (name = "Text Generation Inference", description = "Hugging Face Text Generation Inference API")
    ),
    info(
    title = "Text Generation Inference",
    license(
    name = "Apache 2.0",
    url = "https://www.apache.org/licenses/LICENSE-2.0"
    )
    )
807
808
809
    )]
    struct ApiDoc;

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
810
    // Create state
811
812
813
    let validation = Validation::new(
        validation_workers,
        tokenizer,
814
        max_best_of,
815
        max_stop_sequences,
Nicolas Patry's avatar
Nicolas Patry committed
816
        max_top_n_tokens,
817
818
819
        max_input_length,
        max_total_tokens,
    );
820
821
    let generation_health = Arc::new(AtomicBool::new(false));
    let health_ext = Health::new(client.clone(), generation_health.clone());
822
823
    let infer = Infer::new(
        client,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
824
        validation,
825
        waiting_served_ratio,
826
        max_batch_prefill_tokens,
827
        max_batch_total_tokens,
828
829
        max_waiting_tokens,
        max_concurrent_requests,
830
        shard_info.requires_padding,
831
        shard_info.window_size,
Nicolas Patry's avatar
Nicolas Patry committed
832
        shard_info.speculate,
833
        generation_health,
834
        tokenizer_config,
835
    );
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
836

837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
    // Duration buckets
    let duration_matcher = Matcher::Suffix(String::from("duration"));
    let n_duration_buckets = 35;
    let mut duration_buckets = Vec::with_capacity(n_duration_buckets);
    // Minimum duration in seconds
    let mut value = 0.0001;
    for _ in 0..n_duration_buckets {
        // geometric sequence
        value *= 1.5;
        duration_buckets.push(value);
    }
    // Input Length buckets
    let input_length_matcher = Matcher::Full(String::from("tgi_request_input_length"));
    let input_length_buckets: Vec<f64> = (0..100)
        .map(|x| (max_input_length as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Generated tokens buckets
    let generated_tokens_matcher = Matcher::Full(String::from("tgi_request_generated_tokens"));
    let generated_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Input Length buckets
    let max_new_tokens_matcher = Matcher::Full(String::from("tgi_request_max_new_tokens"));
    let max_new_tokens_buckets: Vec<f64> = (0..100)
        .map(|x| (max_total_tokens as f64 / 100.0) * (x + 1) as f64)
        .collect();
    // Batch size buckets
    let batch_size_matcher = Matcher::Full(String::from("tgi_batch_next_size"));
865
    let batch_size_buckets: Vec<f64> = (0..1024).map(|x| (x + 1) as f64).collect();
OlivierDehaene's avatar
OlivierDehaene committed
866
867
868
    // Speculated tokens buckets
    let skipped_matcher = Matcher::Full(String::from("tgi_request_skipped_tokens"));
    let skipped_buckets: Vec<f64> = (0..shard_info.speculate + 1).map(|x| x as f64).collect();
869

870
    // Prometheus handler
871
872
873
874
875
876
877
878
879
880
    let builder = PrometheusBuilder::new()
        .set_buckets_for_metric(duration_matcher, &duration_buckets)
        .unwrap()
        .set_buckets_for_metric(input_length_matcher, &input_length_buckets)
        .unwrap()
        .set_buckets_for_metric(generated_tokens_matcher, &generated_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(max_new_tokens_matcher, &max_new_tokens_buckets)
        .unwrap()
        .set_buckets_for_metric(batch_size_matcher, &batch_size_buckets)
OlivierDehaene's avatar
OlivierDehaene committed
881
882
        .unwrap()
        .set_buckets_for_metric(skipped_matcher, &skipped_buckets)
883
        .unwrap();
884
885
886
887
    let prom_handle = builder
        .install_recorder()
        .expect("failed to install metrics recorder");

888
889
890
891
892
893
894
    // CORS layer
    let allow_origin = allow_origin.unwrap_or(AllowOrigin::any());
    let cors_layer = CorsLayer::new()
        .allow_methods([Method::GET, Method::POST])
        .allow_headers([http::header::CONTENT_TYPE])
        .allow_origin(allow_origin);

895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
    // Endpoint info
    let info = Info {
        model_id: model_info.model_id,
        model_sha: model_info.sha,
        model_dtype: shard_info.dtype,
        model_device_type: shard_info.device_type,
        model_pipeline_tag: model_info.pipeline_tag,
        max_concurrent_requests,
        max_best_of,
        max_stop_sequences,
        max_input_length,
        max_total_tokens,
        waiting_served_ratio,
        max_batch_total_tokens,
        max_waiting_tokens,
        validation_workers,
        version: env!("CARGO_PKG_VERSION"),
        sha: option_env!("VERGEN_GIT_SHA"),
913
        docker_label: option_env!("DOCKER_LABEL"),
914
915
    };

916
917
918
919
920
    // Configure Swagger UI
    let swagger_ui = SwaggerUi::new("/docs").url("/api-doc/openapi.json", ApiDoc::openapi());

    // Define base and health routes
    let base_routes = Router::new()
921
        .route("/", post(compat_generate))
922
        .route("/info", get(get_model_info))
Olivier Dehaene's avatar
Olivier Dehaene committed
923
        .route("/generate", post(generate))
924
        .route("/generate_stream", post(generate_stream))
925
        .route("/v1/chat/completions", post(chat_completions))
926
        .route("/tokenize", post(tokenize))
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
927
        .route("/health", get(health))
928
        .route("/ping", get(health))
929
930
931
        .route("/metrics", get(metrics));

    // Conditional AWS Sagemaker route
932
    let aws_sagemaker_route = if messages_api_enabled {
933
934
935
936
937
938
939
940
941
942
        Router::new().route("/invocations", post(chat_completions)) // Use 'chat_completions' for OAI_ENABLED
    } else {
        Router::new().route("/invocations", post(compat_generate)) // Use 'compat_generate' otherwise
    };

    // Combine routes and layers
    let app = Router::new()
        .merge(swagger_ui)
        .merge(base_routes)
        .merge(aws_sagemaker_route)
943
        .layer(Extension(info))
944
        .layer(Extension(health_ext.clone()))
945
946
        .layer(Extension(compat_return_full_text))
        .layer(Extension(infer))
947
        .layer(Extension(prom_handle.clone()))
Nicolas Patry's avatar
Nicolas Patry committed
948
        .layer(OtelAxumLayer::default())
949
        .layer(cors_layer);
Olivier Dehaene's avatar
Olivier Dehaene committed
950

951
952
953
954
955
956
957
958
959
960
    if ngrok {
        #[cfg(feature = "ngrok")]
        {
            use ngrok::config::TunnelBuilder;

            let _ = addr;

            let authtoken =
                ngrok_authtoken.expect("`ngrok-authtoken` must be set when using ngrok tunneling");

961
962
963
            let edge = ngrok_edge.expect("`ngrok-edge` must be set when using ngrok tunneling");

            let tunnel = ngrok::Session::builder()
964
965
966
967
                .authtoken(authtoken)
                .connect()
                .await
                .unwrap()
968
969
                .labeled_tunnel()
                .label("edge", edge);
970
971

            let listener = tunnel.listen().await.unwrap();
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986

            // Run prom metrics and health locally too
            tokio::spawn(
                axum::Server::bind(&addr)
                    .serve(
                        Router::new()
                            .route("/health", get(health))
                            .route("/metrics", get(metrics))
                            .layer(Extension(health_ext))
                            .layer(Extension(prom_handle))
                            .into_make_service(),
                    )
                    //Wait until all requests are finished to shut down
                    .with_graceful_shutdown(shutdown_signal()),
            );
987
988
989
990
991
992

            // Run server
            axum::Server::builder(listener)
                .serve(app.into_make_service())
                //Wait until all requests are finished to shut down
                .with_graceful_shutdown(shutdown_signal())
993
                .await?;
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
        }
        #[cfg(not(feature = "ngrok"))]
        {
            let _ngrok_authtoken = ngrok_authtoken;
            let _ngrok_domain = ngrok_domain;
            let _ngrok_username = ngrok_username;
            let _ngrok_password = ngrok_password;

            panic!("`text-generation-router` was compiled without the `ngrok` feature");
        }
    } else {
        // Run server
        axum::Server::bind(&addr)
            .serve(app.into_make_service())
            // Wait until all requests are finished to shut down
            .with_graceful_shutdown(shutdown_signal())
1010
            .await?;
1011
    }
1012
    Ok(())
Olivier Dehaene's avatar
Olivier Dehaene committed
1013
}
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039

/// Shutdown signal handler
async fn shutdown_signal() {
    let ctrl_c = async {
        signal::ctrl_c()
            .await
            .expect("failed to install Ctrl+C handler");
    };

    #[cfg(unix)]
    let terminate = async {
        signal::unix::signal(signal::unix::SignalKind::terminate())
            .expect("failed to install signal handler")
            .recv()
            .await;
    };

    #[cfg(not(unix))]
    let terminate = std::future::pending::<()>();

    tokio::select! {
        _ = ctrl_c => {},
        _ = terminate => {},
    }

    tracing::info!("signal received, starting graceful shutdown");
1040
    opentelemetry::global::shutdown_tracer_provider();
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1041
}
1042

1043
1044
impl From<i32> for FinishReason {
    fn from(finish_reason: i32) -> Self {
Nicolas Patry's avatar
Nicolas Patry committed
1045
        let finish_reason = text_generation_client::FinishReason::try_from(finish_reason).unwrap();
1046
1047
1048
1049
1050
1051
1052
1053
        match finish_reason {
            text_generation_client::FinishReason::Length => FinishReason::Length,
            text_generation_client::FinishReason::EosToken => FinishReason::EndOfSequenceToken,
            text_generation_client::FinishReason::StopSequence => FinishReason::StopSequence,
        }
    }
}

1054
1055
1056
1057
1058
1059
1060
1061
/// Convert to Axum supported formats
impl From<InferError> for (StatusCode, Json<ErrorResponse>) {
    fn from(err: InferError) -> Self {
        let status_code = match err {
            InferError::GenerationError(_) => StatusCode::FAILED_DEPENDENCY,
            InferError::Overloaded(_) => StatusCode::TOO_MANY_REQUESTS,
            InferError::ValidationError(_) => StatusCode::UNPROCESSABLE_ENTITY,
            InferError::IncompleteGeneration => StatusCode::INTERNAL_SERVER_ERROR,
1062
            InferError::TemplateError(_) => StatusCode::UNPROCESSABLE_ENTITY,
1063
1064
1065
1066
1067
1068
        };

        (
            status_code,
            Json(ErrorResponse {
                error: err.to_string(),
1069
                error_type: err.error_type().to_string(),
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
            }),
        )
    }
}

impl From<InferError> for Event {
    fn from(err: InferError) -> Self {
        Event::default()
            .json_data(ErrorResponse {
                error: err.to_string(),
1080
                error_type: err.error_type().to_string(),
1081
1082
1083
1084
            })
            .unwrap()
    }
}