"server/vscode:/vscode.git/clone" did not exist on "362883f259f9e07e22ef7b9cc568e2a16cbacc9a"
hub.py 7.64 KB
Newer Older
1
2
3
4
5
6
7
8
import time
import os

from datetime import timedelta
from loguru import logger
from pathlib import Path
from typing import Optional, List

9
from huggingface_hub import file_download, hf_api, HfApi, hf_hub_download
10
11
12
13
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from huggingface_hub.utils import (
    LocalEntryNotFoundError,
    EntryNotFoundError,
14
    RevisionNotFoundError,  # noqa # Import here to ease try/except in other part of the lib
15
16
17
)

WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None)
18
HF_HUB_OFFLINE = os.environ.get("HF_HUB_OFFLINE", "0").lower() in ["true", "1", "yes"]
19
20


21
22
23
24
25
26
27
28
29
30
31
def _cached_weight_files(model_id: str, revision: Optional[str], extension: str) -> List[str]:
    """Guess weight files from the cached revision snapshot directory"""
    d = _get_cached_revision_directory(model_id, revision)
    if not d:
        return []
    filenames = _weight_files_from_dir(d, extension)
    return filenames


def _weight_hub_files_from_model_info(info: hf_api.ModelInfo, extension: str) -> List[str]:
    return [
32
33
        s.rfilename
        for s in info.siblings
34
35
36
37
        if s.rfilename.endswith(extension)
        and len(s.rfilename.split("/")) == 1
        and "arguments" not in s.rfilename
        and "args" not in s.rfilename
38
        and "training" not in s.rfilename
39
    ]
40
41


42
43
44
45
46
47
48
49
50
def _weight_files_from_dir(d: Path, extension: str) -> List[str]:
    # os.walk: do not iterate, just scan for depth 1, not recursively
    # see _weight_hub_files_from_model_info, that's also what is
    # done there with the len(s.rfilename.split("/")) == 1 condition
    root, _, files = next(os.walk(str(d)))
    filenames = [f for f in files
                 if f.endswith(extension)
                 and "arguments" not in f
                 and "args" not in f
Nicolas Patry's avatar
Nicolas Patry committed
51
                 and "adapter" not in f
52
                 and "training" not in f]
53
54
55
    return filenames


56
def _get_cached_revision_directory(model_id: str, revision: Optional[str]) -> Optional[Path]:
57
58
59
    if revision is None:
        revision = "main"

60
61
    repo_cache = Path(HUGGINGFACE_HUB_CACHE) / Path(
        file_download.repo_folder_name(repo_id=model_id, repo_type="model"))
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84

    if not repo_cache.is_dir():
        # No cache for this model
        return None

    refs_dir = repo_cache / "refs"
    snapshots_dir = repo_cache / "snapshots"

    # Resolve refs (for instance to convert main to the associated commit sha)
    if refs_dir.is_dir():
        revision_file = refs_dir / revision
        if revision_file.exists():
            with revision_file.open() as f:
                revision = f.read()

    # Check if revision folder exists
    if not snapshots_dir.exists():
        return None
    cached_shas = os.listdir(snapshots_dir)
    if revision not in cached_shas:
        # No cache for this revision and we won't try to return a random revision
        return None

85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
    return snapshots_dir / revision


def weight_hub_files(
        model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[str]:
    """Get the weights filenames on the hub"""
    api = HfApi()

    if HF_HUB_OFFLINE:
        filenames = _cached_weight_files(model_id, revision, extension)
    else:
        # Online case, fetch model info from the Hub
        info = api.model_info(model_id, revision=revision)
        filenames = _weight_hub_files_from_model_info(info, extension)

    if not filenames:
        raise EntryNotFoundError(
            f"No {extension} weights found for model {model_id} and revision {revision}.",
            None,
        )

    return filenames


def try_to_load_from_cache(
    model_id: str, revision: Optional[str], filename: str
) -> Optional[Path]:
    """Try to load a file from the Hugging Face cache"""

    d = _get_cached_revision_directory(model_id, revision)
    if not d:
        return None

119
    # Check if file exists in cache
120
    cached_file = d / filename
121
122
123
124
125
126
127
    return cached_file if cached_file.is_file() else None


def weight_files(
    model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[Path]:
    """Get the local files"""
128
    # Local model
129
130
131
    d = Path(model_id)
    if d.exists() and d.is_dir():
        local_files = _weight_files_from_dir(d, extension)
132
133
134
135
        if not local_files:
            raise FileNotFoundError(
                f"No local weights found in {model_id} with extension {extension}"
            )
136
        return [Path(f) for f in local_files]
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    try:
        filenames = weight_hub_files(model_id, revision, extension)
    except EntryNotFoundError as e:
        if extension != ".safetensors":
            raise e
        # Try to see if there are pytorch weights
        pt_filenames = weight_hub_files(model_id, revision, extension=".bin")
        # Change pytorch extension to safetensors extension
        # It is possible that we have safetensors weights locally even though they are not on the
        # hub if we converted weights locally without pushing them
        filenames = [
            f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames
        ]

    if WEIGHTS_CACHE_OVERRIDE is not None:
        files = []
        for filename in filenames:
            p = Path(WEIGHTS_CACHE_OVERRIDE) / filename
            if not p.exists():
157
                raise FileNotFoundError(
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
                    f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}."
                )
            files.append(p)
        return files

    files = []
    for filename in filenames:
        cache_file = try_to_load_from_cache(
            model_id, revision=revision, filename=filename
        )
        if cache_file is None:
            raise LocalEntryNotFoundError(
                f"File {filename} of model {model_id} not found in "
                f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
                f"Please run `text-generation-server download-weights {model_id}` first."
            )
        files.append(cache_file)

    return files


def download_weights(
    filenames: List[str], model_id: str, revision: Optional[str] = None
) -> List[Path]:
    """Download the safetensors files from the hub"""

184
185
    def download_file(fname, tries=5, backoff: int = 5):
        local_file = try_to_load_from_cache(model_id, revision, fname)
186
        if local_file is not None:
187
            logger.info(f"File {fname} already present in cache.")
188
            return Path(local_file)
189

190
        for idx in range(tries):
191
            try:
192
193
                logger.info(f"Download file: {fname}")
                stime = time.time()
194
                local_file = hf_hub_download(
195
                    filename=fname,
196
197
                    repo_id=model_id,
                    revision=revision,
198
                    local_files_only=HF_HUB_OFFLINE,
199
200
                )
                logger.info(
201
                    f"Downloaded {local_file} in {timedelta(seconds=int(time.time() - stime))}."
202
203
204
                )
                return Path(local_file)
            except Exception as e:
205
                if idx + 1 == tries:
206
207
                    raise e
                logger.error(e)
208
209
                logger.info(f"Retrying in {backoff} seconds")
                time.sleep(backoff)
210
                logger.info(f"Retry {idx + 1}/{tries - 1}")
211
212
213
214

    # We do this instead of using tqdm because we want to parse the logs with the launcher
    start_time = time.time()
    files = []
215
216
217
    for i, filename in enumerate(filenames):
        file = download_file(filename)

218
        elapsed = timedelta(seconds=int(time.time() - start_time))
219
        remaining = len(filenames) - (i + 1)
220
        eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0
221

222
223
        logger.info(f"Download: [{i + 1}/{len(filenames)}] -- ETA: {eta}")
        files.append(file)
224

225
    return files