hub.py 7.6 KB
Newer Older
1
2
3
4
5
6
7
8
import time
import os

from datetime import timedelta
from loguru import logger
from pathlib import Path
from typing import Optional, List

9
from huggingface_hub import file_download, hf_api, HfApi, hf_hub_download
10
11
12
13
from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE
from huggingface_hub.utils import (
    LocalEntryNotFoundError,
    EntryNotFoundError,
14
    RevisionNotFoundError,  # noqa # Import here to ease try/except in other part of the lib
15
16
17
)

WEIGHTS_CACHE_OVERRIDE = os.getenv("WEIGHTS_CACHE_OVERRIDE", None)
18
HF_HUB_OFFLINE = os.environ.get("HF_HUB_OFFLINE", "0").lower() in ["true", "1", "yes"]
19
20


21
22
23
24
25
26
27
28
29
30
31
def _cached_weight_files(model_id: str, revision: Optional[str], extension: str) -> List[str]:
    """Guess weight files from the cached revision snapshot directory"""
    d = _get_cached_revision_directory(model_id, revision)
    if not d:
        return []
    filenames = _weight_files_from_dir(d, extension)
    return filenames


def _weight_hub_files_from_model_info(info: hf_api.ModelInfo, extension: str) -> List[str]:
    return [
32
33
        s.rfilename
        for s in info.siblings
34
35
36
37
        if s.rfilename.endswith(extension)
        and len(s.rfilename.split("/")) == 1
        and "arguments" not in s.rfilename
        and "args" not in s.rfilename
38
        and "training" not in s.rfilename
39
    ]
40
41


42
43
44
45
46
47
48
49
50
51
def _weight_files_from_dir(d: Path, extension: str) -> List[str]:
    # os.walk: do not iterate, just scan for depth 1, not recursively
    # see _weight_hub_files_from_model_info, that's also what is
    # done there with the len(s.rfilename.split("/")) == 1 condition
    root, _, files = next(os.walk(str(d)))
    filenames = [f for f in files
                 if f.endswith(extension)
                 and "arguments" not in f
                 and "args" not in f
                 and "training" not in f]
52
53
54
    return filenames


55
def _get_cached_revision_directory(model_id: str, revision: Optional[str]) -> Optional[Path]:
56
57
58
    if revision is None:
        revision = "main"

59
60
    repo_cache = Path(HUGGINGFACE_HUB_CACHE) / Path(
        file_download.repo_folder_name(repo_id=model_id, repo_type="model"))
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

    if not repo_cache.is_dir():
        # No cache for this model
        return None

    refs_dir = repo_cache / "refs"
    snapshots_dir = repo_cache / "snapshots"

    # Resolve refs (for instance to convert main to the associated commit sha)
    if refs_dir.is_dir():
        revision_file = refs_dir / revision
        if revision_file.exists():
            with revision_file.open() as f:
                revision = f.read()

    # Check if revision folder exists
    if not snapshots_dir.exists():
        return None
    cached_shas = os.listdir(snapshots_dir)
    if revision not in cached_shas:
        # No cache for this revision and we won't try to return a random revision
        return None

84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
    return snapshots_dir / revision


def weight_hub_files(
        model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[str]:
    """Get the weights filenames on the hub"""
    api = HfApi()

    if HF_HUB_OFFLINE:
        filenames = _cached_weight_files(model_id, revision, extension)
    else:
        # Online case, fetch model info from the Hub
        info = api.model_info(model_id, revision=revision)
        filenames = _weight_hub_files_from_model_info(info, extension)

    if not filenames:
        raise EntryNotFoundError(
            f"No {extension} weights found for model {model_id} and revision {revision}.",
            None,
        )

    return filenames


def try_to_load_from_cache(
    model_id: str, revision: Optional[str], filename: str
) -> Optional[Path]:
    """Try to load a file from the Hugging Face cache"""

    d = _get_cached_revision_directory(model_id, revision)
    if not d:
        return None

118
    # Check if file exists in cache
119
    cached_file = d / filename
120
121
122
123
124
125
126
    return cached_file if cached_file.is_file() else None


def weight_files(
    model_id: str, revision: Optional[str] = None, extension: str = ".safetensors"
) -> List[Path]:
    """Get the local files"""
127
    # Local model
128
129
130
    d = Path(model_id)
    if d.exists() and d.is_dir():
        local_files = _weight_files_from_dir(d, extension)
131
132
133
134
        if not local_files:
            raise FileNotFoundError(
                f"No local weights found in {model_id} with extension {extension}"
            )
135
        return [Path(f) for f in local_files]
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
    try:
        filenames = weight_hub_files(model_id, revision, extension)
    except EntryNotFoundError as e:
        if extension != ".safetensors":
            raise e
        # Try to see if there are pytorch weights
        pt_filenames = weight_hub_files(model_id, revision, extension=".bin")
        # Change pytorch extension to safetensors extension
        # It is possible that we have safetensors weights locally even though they are not on the
        # hub if we converted weights locally without pushing them
        filenames = [
            f"{Path(f).stem.lstrip('pytorch_')}.safetensors" for f in pt_filenames
        ]

    if WEIGHTS_CACHE_OVERRIDE is not None:
        files = []
        for filename in filenames:
            p = Path(WEIGHTS_CACHE_OVERRIDE) / filename
            if not p.exists():
156
                raise FileNotFoundError(
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
                    f"File {p} not found in {WEIGHTS_CACHE_OVERRIDE}."
                )
            files.append(p)
        return files

    files = []
    for filename in filenames:
        cache_file = try_to_load_from_cache(
            model_id, revision=revision, filename=filename
        )
        if cache_file is None:
            raise LocalEntryNotFoundError(
                f"File {filename} of model {model_id} not found in "
                f"{os.getenv('HUGGINGFACE_HUB_CACHE', 'the local cache')}. "
                f"Please run `text-generation-server download-weights {model_id}` first."
            )
        files.append(cache_file)

    return files


def download_weights(
    filenames: List[str], model_id: str, revision: Optional[str] = None
) -> List[Path]:
    """Download the safetensors files from the hub"""

183
184
    def download_file(fname, tries=5, backoff: int = 5):
        local_file = try_to_load_from_cache(model_id, revision, fname)
185
        if local_file is not None:
186
            logger.info(f"File {fname} already present in cache.")
187
            return Path(local_file)
188

189
        for idx in range(tries):
190
            try:
191
192
                logger.info(f"Download file: {fname}")
                stime = time.time()
193
                local_file = hf_hub_download(
194
                    filename=fname,
195
196
                    repo_id=model_id,
                    revision=revision,
197
                    local_files_only=HF_HUB_OFFLINE,
198
199
                )
                logger.info(
200
                    f"Downloaded {local_file} in {timedelta(seconds=int(time.time() - stime))}."
201
202
203
                )
                return Path(local_file)
            except Exception as e:
204
                if idx + 1 == tries:
205
206
                    raise e
                logger.error(e)
207
208
                logger.info(f"Retrying in {backoff} seconds")
                time.sleep(backoff)
209
                logger.info(f"Retry {idx + 1}/{tries - 1}")
210
211
212
213

    # We do this instead of using tqdm because we want to parse the logs with the launcher
    start_time = time.time()
    files = []
214
215
216
    for i, filename in enumerate(filenames):
        file = download_file(filename)

217
        elapsed = timedelta(seconds=int(time.time() - start_time))
218
        remaining = len(filenames) - (i + 1)
219
        eta = (elapsed / (i + 1)) * remaining if remaining > 0 else 0
220

221
222
        logger.info(f"Download: [{i + 1}/{len(filenames)}] -- ETA: {eta}")
        files.append(file)
223

224
    return files