linear.py 3.02 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
import torch
from text_generation_server.utils.import_utils import SYSTEM
3
from torch.nn import functional as F
Nicolas Patry's avatar
Nicolas Patry committed
4

fxmarty's avatar
fxmarty committed
5
6
7
8
9
10
if SYSTEM == "rocm":
    try:
        from vllm import _custom_C
    except Exception as e:
        raise ImportError(f"Could not load `vllm._custom_C`. Full error: {e}")

Nicolas Patry's avatar
Nicolas Patry committed
11
12
13
14
15
16
17
18

class FastLinear(torch.nn.Module):
    def __init__(
        self,
        weight,
        bias,
    ) -> None:
        super().__init__()
drbh's avatar
drbh committed
19
        self.weight = torch.nn.Parameter(weight, requires_grad=False)
Nicolas Patry's avatar
Nicolas Patry committed
20
        if bias is not None:
drbh's avatar
drbh committed
21
            self.bias = torch.nn.Parameter(bias, requires_grad=False)
Nicolas Patry's avatar
Nicolas Patry committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
        else:
            self.bias = None

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(weight, bias)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return F.linear(input, self.weight, self.bias)


fxmarty's avatar
fxmarty committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class FastLinearROCm(torch.nn.Module):
    def __init__(
        self,
        weight,
        bias,
    ) -> None:
        super().__init__()
        self.weight = torch.nn.Parameter(weight)
        if bias is not None:
            self.bias = torch.nn.Parameter(bias)
        else:
            self.bias = None

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(weight, bias)

    def forward(self, inp: torch.Tensor) -> torch.Tensor:
        weight = self.weight
        bias = self.bias

        if SYSTEM == "rocm" and inp.numel() // inp.shape[-1] == 1:
            batched = False
            inp_shape = inp.shape

            if inp.dim() == 3:
                inp = inp.view(-1, inp_shape[-1])
                batched = True

            m, k = weight.shape[0], inp_shape[1]
            out = torch.empty(
                inp_shape[0], weight.shape[0], dtype=inp.dtype, device="cuda"
            )
            if (k == 8192 and (m == 1280 or m == 7168)) or (k == 3584 and m == 8192):
                _custom_C.LLMM1(weight, inp, out, 8)
            elif k <= 8192 and k % 8 == 0 and m % 4 == 0:
                _custom_C.LLMM1(weight, inp, out, 4)
            else:
                out = F.linear(inp, weight)

            if batched:
                out.view(*inp_shape[:-1], out.shape[-1])

            if bias is not None:
                out = out + bias
            return out
        return F.linear(inp, self.weight, self.bias)


92
93
94
95
96
def get_linear(weight, bias):
    # Weights that are loaded through methods that are not
    # quantization-aware are still bare tensors. We may want
    # to change this in the future.
    if isinstance(weight, torch.Tensor):
fxmarty's avatar
fxmarty committed
97
        if SYSTEM == "rocm":
98
            return FastLinearROCm(weight, bias)
Nicolas Patry's avatar
Nicolas Patry committed
99
        else:
100
            return FastLinear(weight, bias)
Nicolas Patry's avatar
Nicolas Patry committed
101

102
    return weight.get_linear(bias)