linear.py 5.09 KB
Newer Older
Nicolas Patry's avatar
Nicolas Patry committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
from torch.nn import functional as F
from text_generation_server.utils.import_utils import SYSTEM


class FastLinear(torch.nn.Module):
    def __init__(
        self,
        weight,
        bias,
    ) -> None:
        super().__init__()
        self.weight = torch.nn.Parameter(weight)
        if bias is not None:
            self.bias = torch.nn.Parameter(bias)
        else:
            self.bias = None

    @classmethod
    def load(cls, config, prefix: str, weights, bias: bool):
        weight = weights.get_tensor(f"{prefix}.weight")
        if bias:
            bias = weights.get_tensor(f"{prefix}.bias")
        else:
            bias = None
        return cls(weight, bias)

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return F.linear(input, self.weight, self.bias)


def get_linear(weight, bias, quantize):
    if quantize is None:
        linear = FastLinear(weight, bias)
    elif quantize == "eetq":
        try:
            from text_generation_server.layers.eetq import EETQLinear

            linear = EETQLinear(weight, bias)
        except ImportError:
            raise ImportError(
                "Please install EETQ from https://github.com/NetEase-FuXi/EETQ"
            )
    elif quantize == "fp8":
        from text_generation_server.layers.fp8 import Fp8Linear

        linear = Fp8Linear(weight, bias)
    elif quantize == "bitsandbytes":
        try:
            from text_generation_server.layers.bnb import (
                warn_deprecate_bnb,
                Linear8bitLt,
            )
        except ImportError:
            raise NotImplementedError(
                f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
            )
        warn_deprecate_bnb()
        linear = Linear8bitLt(
            weight,
            bias,
            has_fp16_weights=False,
            threshold=6.0,
        )
        if bias is not None:
            linear.bias = nn.Parameter(bias)
    elif quantize == "bitsandbytes-fp4":
        try:
            from text_generation_server.layers.bnb import Linear4bit
        except ImportError:
            raise NotImplementedError(
                f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
            )
        linear = Linear4bit(
            weight,
            bias,
            quant_type="fp4",
        )
    elif quantize == "bitsandbytes-nf4":
        try:
            from text_generation_server.layers.bnb import Linear4bit
        except ImportError:
            raise NotImplementedError(
                f"Bitsandbytes is missing install it with `pip install bitsandbytes`."
            )
        linear = Linear4bit(
            weight,
            bias,
            quant_type="nf4",
        )
    elif quantize == "gptq":
        try:
            qweight, qzeros, scales, g_idx, bits, groupsize, use_exllama = weight
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `gptq` compatible, loader needs to be updated."
            )

        if use_exllama:
            try:
                from text_generation_server.layers.gptq import (
                    ExllamaQuantLinear,
                )
            except ImportError:
                raise NotImplementedError(
                    f"Exllama gptq kernels are not installed. Install them `cd server/exllama_kernels && python setup.py install && cd ../exllamav2_kernels && python setup.py install`"
                )

            linear = ExllamaQuantLinear(
                qweight, qzeros, scales, g_idx, bias, bits, groupsize
            )
        else:
            from text_generation_server.layers.gptq.quant_linear import QuantLinear

            linear = QuantLinear(
                qweight,
                qzeros,
                scales,
                g_idx,
                bias,
                bits,
                groupsize,
            )
    elif quantize == "awq":
        try:
            qweight, qzeros, scales, _, bits, groupsize, _ = weight
        except Exception:
            raise NotImplementedError(
                f"The passed weight is not `awq` compatible, loader needs to be updated."
            )
        if SYSTEM == "rocm":
            raise NotImplementedError(
                "AWQ GEMM kernel can't be used on ROCm systems, please use `--quantize gptq` instead "
                "to use Exllama/GPTQ kernels for AWQ inference."
            )
        try:
            from text_generation_server.layers.awq.quantize.qmodule import WQLinear

            linear = WQLinear(
                w_bit=bits,
                group_size=groupsize,
                qweight=qweight,
                qzeros=qzeros,
                scales=scales,
                bias=bias is not None,
            )
        except ImportError:
            raise NotImplementedError(
                "You do not seem to have awq installed, either install it (cd server &&  make install-awq), or try using GPTQ `---quantize gptq` a conversion AWQ->GPTQ will happen on the fly"
            )
    else:
        raise NotImplementedError(f"Quantization `{quantize}` is not implemented yet.")
    return linear