marlin.py 20.4 KB
Newer Older
1
from dataclasses import dataclass
2
from typing import List, Optional, Tuple, Union
3
4
5

import torch
import torch.nn as nn
6
7
from loguru import logger
from text_generation_server.layers.fp8 import fp8_quantize
8
from text_generation_server.utils.import_utils import SYSTEM
9
from text_generation_server.utils.log import log_once
10
from text_generation_server.utils.weights import Weight, Weights, WeightsLoader
11

12
try:
13
    import marlin_kernels
14
except ImportError:
15
    marlin_kernels = None
16
17
18
19
20
21
22

try:
    major, _minor = torch.cuda.get_device_capability()
    has_sm_8_0 = major >= 8
except Exception:
    has_sm_8_0 = False

23
24
25

GPTQ_MARLIN_BITS = [4, 8]
GPTQ_MARLIN_GROUP_SIZES = [-1, 32, 64, 128]
26
27
28
MARLIN_TILE_SIZE = 16


29
30
31
32
33
34
35
class MarlinWeightsLoader(WeightsLoader):
    """Loader for Marlin-quantized weights."""

    def __init__(self, *, bits: int, is_marlin_24: bool):
        self.bits = bits
        self.is_marlin_24 = is_marlin_24

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
    def get_weights(self, weights: "Weights", prefix: str):
        """
        Get weights at the given prefix and apply without tensor paralllism.
        """
        is_marlin_24 = getattr(self, "gptq_checkpoint_format", None) == "marlin_24"
        if is_marlin_24:
            try:
                B = weights.get_tensor(f"{prefix}.B_24")
            except RuntimeError:
                raise RuntimeError(
                    "Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
                )

            B_meta = weights.get_tensor(f"{prefix}.B_meta")
            s = weights.get_tensor(f"{prefix}.s")
            weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
        else:
            try:
                B = weights.get_tensor(f"{prefix}.B")
            except RuntimeError:
                raise RuntimeError(
                    "Cannot load `marlin` weight, make sure the model is already quantized."
                )

            s = weights.get_tensor(f"{prefix}.s")
            weight = MarlinWeight(B=B, s=s)

        return weight

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
    def get_weights_col_packed(
        self,
        weights: Weights,
        prefix: str,
        block_sizes: Union[int, List[int]],
    ):
        if self.is_marlin_24:
            B = weights.get_packed_sharded(
                f"{prefix}.B_24", dim=1, block_sizes=block_sizes
            )
            B_meta = weights.get_packed_sharded(
                f"{prefix}.B_meta", dim=1, block_sizes=block_sizes
            )
            s = weights.get_packed_sharded(
                f"{prefix}.s", dim=1, block_sizes=block_sizes
            )

            weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
        else:
            B = weights.get_packed_sharded(
                f"{prefix}.B", dim=1, block_sizes=block_sizes
            )
            s = weights.get_packed_sharded(
                f"{prefix}.s", dim=1, block_sizes=block_sizes
            )
            weight = MarlinWeight(B=B, s=s)

        return weight

    def get_multi_weights_col(self, weights: Weights, prefixes: List[str], dim: int):
95
        if self.is_marlin_24:
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
            try:
                B = torch.cat(
                    [weights.get_sharded(f"{p}.B_24", dim=1) for p in prefixes], dim=1
                )
            except RuntimeError:
                raise RuntimeError(
                    f"Cannot load `marlin` weight, make sure the model is already quantized"
                )

            B_meta = torch.cat(
                [weights.get_sharded(f"{p}.B_meta", dim=1) for p in prefixes], dim=1
            )

            s = torch.cat(
                [weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
            )

            weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
        else:
            try:
                B = torch.cat(
                    [weights.get_sharded(f"{p}.B", dim=1) for p in prefixes], dim=1
                )
            except RuntimeError:
                raise RuntimeError(
                    f"Cannot load `marlin` weight, make sure the model is already quantized"
                )
            s = torch.cat(
                [weights.get_sharded(f"{p}.s", dim=1) for p in prefixes], dim=1
            )

            weight = MarlinWeight(B=B, s=s)

        return weight

    def get_weights_row(self, weights: Weights, prefix: str):
132
        if self.is_marlin_24:
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            try:
                B = weights.get_sharded(f"{prefix}.B_24", dim=0)
            except RuntimeError:
                raise RuntimeError(
                    "Cannot load `marlin` 2:4 sparsity weight, make sure the model is already quantized."
                )

            B_meta = weights.get_sharded(f"{prefix}.B_meta", dim=0)
            num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
            if num_groups == 1:
                # The number of groups is 1 when groupsize == -1. share
                # scales between all shards in this case.
                s = weights.get_tensor(f"{prefix}.s")
            else:
                s = weights.get_sharded(f"{prefix}.s", dim=0)

            weight = GPTQMarlin24Weight(B=B, B_meta=B_meta, s=s, bits=self.bits)
        else:
            try:
                B = weights.get_sharded(f"{prefix}.B", dim=0)
            except RuntimeError:
                raise RuntimeError(
                    "Cannot load `marlin` weight, make sure the model is already quantized."
                )

            num_groups = weights._get_slice(f"{prefix}.s").get_shape()[0]
            if num_groups == 1:
                # The number of groups is 1 when groupsize == -1. share
                # scales between all shards in this case.
                s = weights.get_tensor(f"{prefix}.s")
            else:
                s = weights.get_sharded(f"{prefix}.s", dim=0)
            weight = MarlinWeight(B=B, s=s)

        return weight


def can_use_gptq_marlin(
    *, bits: int, groupsize: int, quant_method: str, quantize: str, sym: bool
) -> bool:
173
174
175
176
177
    return (
        SYSTEM == "cuda"
        and marlin_kernels is not None
        and has_sm_8_0
        and quantize == "gptq"
178
179
180
181
        and quant_method == "gptq"
        and bits in GPTQ_MARLIN_BITS
        and groupsize in GPTQ_MARLIN_GROUP_SIZES
        and sym
182
183
184
    )


185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
def _check_marlin_kernels():
    if not (SYSTEM == "cuda" and has_sm_8_0):
        raise NotImplementedError(
            "Using quantized Marlin models requires a GPU with CUDA capability 8.0 or later."
        )

    if marlin_kernels is None:
        raise NotImplementedError(
            "marlin is not installed, install it with: pip install server/marlin"
        )


def _check_valid_shape(in_features: int, out_features: int):
    if (in_features % 128 != 0 or out_features % 64 != 0) and (
        in_features % 64 != 0 or out_features % 128 != 0
    ):
        raise ValueError(
            f"The GPTQ Marlin kernel does not have a valid thread configuration for weight matrix with shape ({out_features}, {in_features})."
            " The shape elements must be divisible by (128, 64) or (64, 128)."
        )


# https://github.com/IST-DASLab/marlin/blob/2f6d7c10e124b3c5fa29ff8d77d568bd7af3274c/marlin/__init__.py#L40C1-L68C54
def _get_perms() -> Tuple[List[int], List[int]]:
    scale_perm = []
    for i in range(8):
        scale_perm.extend([i + 8 * j for j in range(8)])
    scale_perm_single = []
    for i in range(4):
        scale_perm_single.extend([2 * i + j for j in [0, 1, 8, 9, 16, 17, 24, 25]])
    return scale_perm, scale_perm_single


_scale_perm, _scale_perm_single = _get_perms()


def permute_scales(scales: torch.Tensor):
    out_features = scales.shape[1]
    if scales.shape[0] == 1:
        scales = scales.reshape((-1, len(_scale_perm_single)))[:, _scale_perm_single]
    else:
        scales = scales.reshape((-1, len(_scale_perm)))[:, _scale_perm]
    return scales.reshape((-1, out_features)).contiguous()


@dataclass
231
class GPTQMarlinWeight(Weight):
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
    """
    Repacked GPTQ Marlin weights.
    """

    qweight: torch.Tensor
    scales: torch.Tensor
    g_idx: torch.Tensor
    perm: torch.Tensor
    bits: int
    is_full_k: bool

    def __post_init__(self):
        assert self.qweight.dtype == torch.int32
        assert self.scales.dtype == torch.float16
        assert self.g_idx.dtype == torch.int32
        assert self.perm.dtype == torch.int32

249
250
251
252
253
254
    def get_linear(self, bias: torch.Tensor):
        return GPTQMarlinLinear(
            weight=self,
            bias=bias,
        )

255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344

def repack_gptq_for_marlin(
    *,
    qweight: torch.Tensor,
    scales: torch.Tensor,
    g_idx: torch.Tensor,
    bits: int,
    desc_act: bool,
    groupsize: int,
    sym: bool,
    sharded_infeatures: bool,
) -> GPTQMarlinWeight:
    """Convert GPTQ weights to a layout that's compatible with GPTQ-Marlin kernels."""
    _check_marlin_kernels()
    assert marlin_kernels is not None

    if bits not in GPTQ_MARLIN_BITS:
        supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
        raise RuntimeError(
            f"Repacking {bits}-bit GPTQ weights as Marlin is not supported, must be one of: {supported_bits}"
        )

    if groupsize not in GPTQ_MARLIN_GROUP_SIZES:
        supported_sizes = ", ".join(str(b) for b in GPTQ_MARLIN_GROUP_SIZES)
        raise RuntimeError(
            f"Repacking GPTQ weights with group size {groupsize} as Marlin is not supported, must be one of: {supported_sizes}"
        )
    if not sym:
        raise RuntimeError(
            "Repacking GPTQ weights with asymmetric quantization as Marlin is not supported."
        )

    weights_per_int = 32 // bits
    in_features = qweight.shape[0] * weights_per_int
    out_features = qweight.shape[1]

    if in_features % groupsize != 0:
        raise ValueError(
            f"Number of input features ({in_features}) not divisible by group size ({groupsize})"
        )

    if desc_act and groupsize != -1:
        perm = torch.argsort(g_idx).to(torch.int)
        g_idx = g_idx[perm]
    else:
        perm = torch.empty(0, dtype=torch.int, device=qweight.device)
        g_idx = torch.empty(0, dtype=torch.int, device=qweight.device)

    repacked = marlin_kernels.gptq_marlin_repack(
        qweight, perm, in_features, out_features, bits
    )

    scales = permute_scales(scales)

    is_full_k = not (desc_act and sharded_infeatures)

    return GPTQMarlinWeight(
        qweight=repacked,
        scales=scales,
        g_idx=g_idx,
        perm=perm,
        bits=bits,
        is_full_k=is_full_k,
    )


class GPTQMarlinLinear(nn.Module):
    """
    Linear layer for GPTQ weights that were converted for the GPTQ-Marlin
    kernels.
    """

    def __init__(
        self,
        *,
        weight: GPTQMarlinWeight,
        bias: Optional[torch.Tensor],
    ):
        super().__init__()

        _check_marlin_kernels()
        assert marlin_kernels is not None

        in_features = weight.qweight.shape[0] * MARLIN_TILE_SIZE
        out_features = weight.scales.shape[1]
        _check_valid_shape(in_features=in_features, out_features=out_features)

        self.bits = weight.bits
        self.is_full_k = weight.is_full_k

345
346
347
348
        self.qweight = weight.qweight
        self.scales = weight.scales
        self.g_idx = weight.g_idx
        self.perm = weight.perm
349
        if bias is not None:
350
            self.bias = bias
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
        else:
            self.bias = None

        self.workspace = torch.zeros(
            out_features // 64 * 16, dtype=torch.int, device=weight.qweight.device
        )

    def forward(self, A: torch.Tensor) -> torch.Tensor:
        assert marlin_kernels is not None

        A_flat = A.view(-1, A.shape[-1])
        C = marlin_kernels.gptq_marlin_gemm(
            A_flat,
            self.qweight,
            self.scales,
            self.g_idx,
            self.perm,
            self.workspace,
            self.bits,
            A_flat.shape[0],
            self.scales.shape[1],
            A_flat.shape[1],
            self.is_full_k,
        )
        C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))

        if self.bias is not None:
            C += self.bias

        return C


383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
GPTQ_MARLIN_24_MIN_THREAD_N = 128
GPTQ_MARLIN_24_MIN_THREAD_K = 128
GPTQ_MARLIN_24_MAX_PARALLEL = 64
GPTQ_MARLIN_24_SUPPORTED_NUM_BITS = [4, 8]
GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES = [-1, 128]


@dataclass
class GPTQMarlin24Weight:
    """
    GPTQ-Marlin 2:4 weights.

    Attributes:
        B (torch.Tensor): int4-quantized weights packed into int32.
        B_meta (torch.Tensor): metadata for 2:4 sparsity.
        s (torch.Tensor): float16 scales.
        bits: quantized weight size.
    """

    B: torch.Tensor
    B_meta: torch.Tensor
    s: torch.Tensor
    bits: int

    def __post_init__(self):
        assert self.B.dtype == torch.int32
        assert self.B_meta.dtype == torch.int16
        assert self.s.dtype == torch.float16

412
413
414
415
416
417
    def get_linear(self, bias: torch.Tensor):
        return GPTQMarlin24Linear(
            weight=self,
            bias=bias,
        )

418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498

class GPTQMarlin24Linear(nn.Module):
    def __init__(self, *, weight: GPTQMarlin24Weight, bias: Optional[torch.Tensor]):
        super().__init__()

        _check_marlin_kernels()
        assert marlin_kernels is not None

        if weight.bits not in GPTQ_MARLIN_BITS:
            supported_bits = ", ".join(str(b) for b in GPTQ_MARLIN_BITS)
            raise RuntimeError(
                f"{weight.bits}-bit GPTQ Sparse 2:4 Marlin is not supported, must be one of: {supported_bits}"
            )

        in_features = weight.B.shape[0] * MARLIN_TILE_SIZE * 2
        out_features = weight.s.shape[1]
        groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]

        if groupsize not in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES:
            supported_sizes = ", ".join(
                str(b) for b in GPTQ_MARLIN_24_SUPPORTED_GROUP_SIZES
            )
            raise RuntimeError(
                f"Group size {groupsize} is not supported, must be one of: {supported_sizes}"
            )

        self.bits = weight.bits
        weights_per_int32 = 32 // self.bits

        assert (
            out_features % GPTQ_MARLIN_24_MIN_THREAD_N == 0
        ), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_N} threads"
        assert (
            out_features % weights_per_int32 == 0
        ), f"Number of output features ({out_features}) not divisable by weights per int32 ({weights_per_int32})"

        assert (
            in_features % GPTQ_MARLIN_24_MIN_THREAD_K == 0
        ), f"Number of output features ({out_features}) not divisable by {GPTQ_MARLIN_24_MIN_THREAD_K} threads"
        if groupsize != -1 and in_features % groupsize != 0:
            raise ValueError(
                f"Number of input features ({in_features}) not divisable by group size ({groupsize})"
            )

        self.B = weight.B
        self.B_meta = weight.B_meta
        self.s = weight.s
        if bias is not None:
            self.bias = bias
        else:
            self.bias = None

        self.workspace = torch.zeros(
            (out_features // GPTQ_MARLIN_24_MIN_THREAD_N) * GPTQ_MARLIN_24_MAX_PARALLEL,
            dtype=torch.int,
            device=weight.B.device,
        )

    def forward(self, A: torch.Tensor) -> torch.Tensor:
        assert marlin_kernels is not None

        C = marlin_kernels.gptq_marlin_24_gemm(
            A.view(-1, A.shape[-1]),
            self.B,
            self.B_meta,
            self.s,
            self.workspace,
            self.bits,
            A.shape[0],
            self.s.shape[1],
            A.shape[1],
        )

        C = C.reshape(A.shape[:-1] + (self.s.shape[1],))

        if self.bias is not None:
            C += self.bias

        return C


499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
class GPTQMarlinFP8Linear(nn.Module):
    """
    FP8 GPTQ-Marlin linear layer.
    """

    def __init__(
        self,
        weight: torch.Tensor,
        bias: Optional[torch.Tensor],
    ) -> None:
        super().__init__()

        _check_marlin_kernels()
        assert marlin_kernels is not None

        log_once(logger.info, "GPU does not support FP8, using Marlin FP8 kernel")

        qweight, scale = fp8_quantize(weight)
        scale = scale.to(torch.float16)
        qweight, scales = repack_fp8_for_marlin(qweight, scale)

        in_features = qweight.shape[0] * MARLIN_TILE_SIZE
        out_features = scales.shape[1]
        _check_valid_shape(in_features=in_features, out_features=out_features)

        self.qweight = qweight
        self.scales = scales
        self.bias = bias if bias is not None else None

        self.workspace = torch.zeros(
            out_features // 64 * 16, dtype=torch.int, device=qweight.device
        )

    def forward(self, A: torch.Tensor) -> torch.Tensor:
        assert marlin_kernels is not None

        A_flat = A.view(-1, A.shape[-1])
        C = marlin_kernels.fp8_marlin_gemm(
            A_flat,
            self.qweight,
            self.scales,
            self.workspace,
            8,
            A_flat.shape[0],
            self.scales.shape[1],
            A_flat.shape[1],
        )
        C = C.reshape(A.shape[:-1] + (self.scales.shape[1],))

        if self.bias is not None:
            C += self.bias

        return C


def pack_fp8_as_int32(fp8_tensor: torch.Tensor) -> torch.Tensor:
    """
    Repack FP8 weights to gptq format (packed int32 elements).
    """
    assert fp8_tensor.dtype == torch.float8_e4m3fn

    if fp8_tensor.shape[0] % 4 != 0:
        raise ValueError(
            f"Leading tensor dimension is not divisable by 4: {fp8_tensor.shape[0]}"
        )

    # Reshape to prepare for packing
    reshaped = fp8_tensor.reshape(-1, 4, *fp8_tensor.shape[1:])

    # Convert fp8 to uint8 (byte) representation
    byte_tensor = reshaped.view(torch.uint8)

    # Pack 4 uint8 values into one int32
    packed = torch.zeros(
        fp8_tensor.shape[0] // 4,
        fp8_tensor.shape[1],
        dtype=torch.int32,
        device=fp8_tensor.device,
    )

    for i in range(4):
        packed.bitwise_or_(byte_tensor[:, i].to(torch.int32) << i * 8)

    return packed


def repack_fp8_for_marlin(weight: torch.Tensor, scale: torch.Tensor):
    """
    Repack FP8 tensor for GPTQ-Marlin.
    """

    out_features, in_features = weight.shape

    # Torch linear layers weights with shape [out_features, in_features],
    # GPTQ-quantized weights use [in_feateres/pack_factor, in_features],
    # so transpose before packing.
    qweight = pack_fp8_as_int32(weight.t())

    perm = torch.empty(0, dtype=torch.int, device=qweight.device)
    repacked = marlin_kernels.gptq_marlin_repack(
        qweight, perm, in_features, out_features, 8
    )

    scales = scale.reshape(1, 1).repeat(1, out_features)
    scales = permute_scales(scales)

    return repacked, scales


608
@dataclass
609
class MarlinWeight(Weight):
610
611
612
613
614
615
616
617
618
619
620
    """
    Marlin weights.

    Attributes:
        B (torch.Tensor): int4-quantized weights packed into int32.
        s (torch.Tensor): float16 scales.
    """

    B: torch.Tensor
    s: torch.Tensor

621
622
623
624
    def __post_init__(self):
        assert self.B.dtype == torch.int32
        assert self.s.dtype == torch.float16

625
626
627
    def get_linear(self, bias: torch.Tensor):
        return MarlinLinear(weight=self, bias=bias)

628
629

class MarlinLinear(nn.Module):
630
    def __init__(self, *, weight: MarlinWeight, bias: Optional[torch.Tensor]):
631
632
        super().__init__()

633
634
        _check_marlin_kernels()
        assert marlin_kernels is not None
635

636
637
        in_features = weight.B.shape[0] * MARLIN_TILE_SIZE
        out_features = weight.s.shape[1]
638
639
640
641
642
643
644
        assert (
            in_features % 128 == 0
        ), f"Number of input features ({in_features}) not divisable by 128"
        assert (
            out_features % 256 == 0
        ), f"Number of output features ({out_features}) not divisable by 256"

645
646
        groupsize = -1 if weight.s.shape[0] == 1 else in_features // weight.s.shape[0]
        assert groupsize in {
647
648
            -1,
            128,
649
        }, f"Group size must be -1 or 128, was {groupsize}"
650

651
652
        self.B = weight.B
        self.s = weight.s
653
        if bias is not None:
654
            self.bias = bias
655
656
657
658
        else:
            self.bias = None

        self.workspace = torch.zeros(
659
            out_features // 64 * 16, dtype=torch.int, device=weight.B.device
660
661
662
        )

    def forward(self, A: torch.Tensor) -> torch.Tensor:
663
664
665
666
        assert marlin_kernels is not None

        C = marlin_kernels.marlin_gemm(
            A.view(-1, A.shape[-1]),
667
668
669
            self.B,
            self.s,
            self.workspace,
670
671
672
            A.shape[0],
            self.s.shape[1],
            A.shape[1],
673
        )
674
        C = C.reshape(A.shape[:-1] + (self.s.shape[1],))
675
676
677
678
679

        if self.bias is not None:
            C += self.bias

        return C