- 19 Jul, 2024 2 commits
-
-
Daniël de Kok authored
Deepseek V2 is a MoE model from Deepseek. Relevant variations compared to other models: - Grouped top-K in expert selection. - mscale in yarn is calculated using the `mscale` and `mscale_all_dim` configuration options. - `mscale_all_dim` is also used in scaling attention softmax. - Permuting of the query/key representations before applying rotary embeddings. - Some projections cannot be sharded (`q_a_proj`, `kv_a_proj_with_mqa`). So, we need weight loads that supports quantized weights. To this end `{Weights,WeightLoader}.get_weight` was added. - The query/key head dimensionality differs from that of the value, so we need to pad during attention. - Heads with size 192, needs an extension to our paged attention fork and we need to ensure that the KV cache is allocated with the correct size. - Shared experts. -
Daniël de Kok authored
* Improve the handling of quantized weights Handling of quantized weights was split between two mechanisms: - For quantized checkpoints, we used the new weight loader infrastructure. - For quantization while loading (EETQ, FP8, bitsandbytes) we instead relied on conditional in `get_linear`. Weight loaders support context managers to selectively load particular layers with different weight loaders, which is useful for models like Idefics2 AWQ, which uses a quantized text model, but unquantized vision and connector models. However, the context manager would be overrided by `get_linear`, which string-checks `quantizer`. Also, the context manager would not work with EETQ, FP8, and bitsandbytes. This change migrates all quantizers to the weight loader infrastructure. This has several benefits: - We can use context managers with all quantizers. - All the implementation details move down to the quantizer layers, `get_linear` does not need to know how to handle quantizer linear layers. - All quantizer weights are strongly typed, we don't pass around raw tensors. - We don't have to pass around the `quantizer` string everywhere. * Exclude non-MLP layers when using FP8 quantization with Llama
-
- 11 Jul, 2024 1 commit
-
-
Daniël de Kok authored
Use FP8 GPTQ-Marlin kernels to enable FP8 support on CUDA GPUs with compute capability >=8.0 and <8.9. Co-authored-by:Florian Zimmermeister <flozi00.fz@gmail.com>
-
- 09 Jul, 2024 1 commit
-
-
Daniël de Kok authored
Quantized weights were loaded in the `Weights` class, but this was getting quite unwieldy, where every higher level method to load weights was a long conditional to cover all the different quantizers. This change moves loading of quantized weights out of the `Weights` class. This is done by defining a simple `WeightsLoader` interface that is implemented by `Exl2WeightsLoader`, `GPTQWeightsLoader`, and `MarlinWeightsLoader`. These implementations are in the quantizers' respective modules. The `Weights` class provides the low-level load operations (such as loading tensors or sharded tensors), but delegates loads that need quantizer-specific weight processing to a loader. The loaders still use the low-level functionality provided by `Weights`. I initially tried making a hierarchy where a class like `GPTQWeights` would inherit from `Weights`. But it is not very flexible (e.g. does not work well with the new weight storage mock used in tests) and the implicit indirections made the code harder to follow.
-
- 01 Jul, 2024 1 commit
-
-
Daniël de Kok authored
GPTQ-Marlin is currently the best-performing kernel for GPTQ models. So let's use it by default if the kernels are installed, the GPU supports it, and the kernels support the configuration. For models generated by `text-generation-server quantize`, use `sym=False`. This subcommand symmetric quantization since the beginning and incorrectly reporting the model to be symmetric will use GPTQ-Marlin (which does not support asymmetric quantization).
-
- 25 Jun, 2024 1 commit
-
-
Daniël de Kok authored
This change adds support for 2:4 sparsity when using Marlin quantization. The 2:4 kernel is used when: * The quantizer is `marlin`; * the quantizer checkpoint format is `marlin_24`. Fixes #2098.
-
- 14 Jun, 2024 1 commit
-
-
Daniël de Kok authored
Add support for GPTQ Marlin kernels GPTQ Marlin extends the Marlin kernels to support common GPTQ configurations: - bits: 4 or 8 - groupsize: -1, 32, 64, or 128 - desc_act: true/false Using the GPTQ Marlin kernels requires repacking the parameters in the Marlin quantizer format. The kernels were contributed by Neural Magic to VLLM. We vendor them here for convenience.
-
- 06 Jun, 2024 1 commit
-
-
Daniël de Kok authored
This change adds support for Marlin-quantized models. Marlin is an FP16xINT4 matmul kernel, which provides good speedups decoding batches of 16-32 tokens. It supports quantized models with symmetric quantization, groupsize -1 or 128, and 4-bit. Tested with: - Llama 2 - Llama 3 - Phi 3
-