server.py 7.01 KB
Newer Older
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
1
import asyncio
Olivier Dehaene's avatar
Olivier Dehaene committed
2
import os
3
import torch
Olivier Dehaene's avatar
Olivier Dehaene committed
4

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
5
from grpc import aio
6
from loguru import logger
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
7
8
9

from grpc_reflection.v1alpha import reflection
from pathlib import Path
10
from typing import List, Optional
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
11

12
13
14
15
16
from text_generation_server.cache import Cache
from text_generation_server.interceptor import ExceptionInterceptor
from text_generation_server.models import Model, get_model
from text_generation_server.pb import generate_pb2_grpc, generate_pb2
from text_generation_server.tracing import UDSOpenTelemetryAioServerInterceptor
17
from text_generation_server.models.idefics_causal_lm import IdeficsCausalLMBatch
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
18

Olivier Dehaene's avatar
Olivier Dehaene committed
19
class TextGenerationService(generate_pb2_grpc.TextGenerationServiceServicer):
20
    def __init__(self, model: Model, cache: Cache, server_urls: List[str]):
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
21
22
23
        self.cache = cache
        self.model = model
        self.server_urls = server_urls
24
25
26
27
        # For some reason, inference_mode does not work well with GLOO which we use on CPU
        if model.device.type == "cuda":
            # Force inference mode for the lifetime of TextGenerationService
            self._inference_mode_raii_guard = torch._C._InferenceMode(True)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
28

29

30
31
32
    async def Info(self, request, context):
        return self.model.info

33
34
35
36
37
    async def Health(self, request, context):
        if self.model.device.type == "cuda":
            torch.zeros((2, 2)).cuda()
        return generate_pb2.HealthResponse()

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
38
39
40
41
    async def ServiceDiscovery(self, request, context):
        return generate_pb2.ServiceDiscoveryResponse(urls=self.server_urls)

    async def ClearCache(self, request, context):
42
43
44
45
        if request.HasField("id"):
            self.cache.delete(request.id)
        else:
            self.cache.clear()
Olivier Dehaene's avatar
Olivier Dehaene committed
46
        return generate_pb2.ClearCacheResponse()
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
47

48
49
50
51
    async def FilterBatch(self, request, context):
        batch = self.cache.pop(request.batch_id)
        if batch is None:
            raise ValueError(f"Batch ID {request.batch_id} not found in cache.")
52
        filtered_batch = batch.filter(request.request_ids)
53
54
55
56
        self.cache.set(filtered_batch)

        return generate_pb2.FilterBatchResponse(batch=filtered_batch.to_pb())

57
    async def Warmup(self, request, context):
58
59
60
61
62
63
64
65
        if self.model.batch_type == IdeficsCausalLMBatch: #Hack, i would rather use kwargs in the `from_pb` call
            batch = self.model.batch_type.from_pb(
                request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device
            )
        else:
            batch = self.model.batch_type.from_pb(
                request.batch, self.model.tokenizer, self.model.dtype, self.model.device
            )
66
        max_supported_total_tokens = self.model.warmup(batch)
67

68
69
70
        return generate_pb2.WarmupResponse(
            max_supported_total_tokens=max_supported_total_tokens
        )
71

72
    async def Prefill(self, request, context):
73
74
75
76
77
78
79
80
        if self.model.batch_type == IdeficsCausalLMBatch: #Hack, i would rather use kwargs in the `from_pb` call
            batch = self.model.batch_type.from_pb(
                request.batch, self.model.tokenizer, self.model.processor, self.model.dtype, self.model.device
            )
        else:
            batch = self.model.batch_type.from_pb(
                request.batch, self.model.tokenizer, self.model.dtype, self.model.device
            )
Olivier Dehaene's avatar
Olivier Dehaene committed
81

82
        generations, next_batch = self.model.generate_token(batch)
Olivier Dehaene's avatar
Olivier Dehaene committed
83
84
        self.cache.set(next_batch)

85
86
        return generate_pb2.PrefillResponse(
            generations=[generation.to_pb() for generation in generations],
Olivier Dehaene's avatar
Olivier Dehaene committed
87
            batch=next_batch.to_pb() if next_batch else None,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
88
89
        )

90
    async def Decode(self, request, context):
Olivier Dehaene's avatar
Olivier Dehaene committed
91
92
93
94
95
96
97
98
        if len(request.batches) == 0:
            raise ValueError("Must provide at least one batch")

        batches = []
        for batch_pb in request.batches:
            batch = self.cache.pop(batch_pb.id)
            if batch is None:
                raise ValueError(f"Batch ID {batch_pb.id} not found in cache.")
99
            batches.append(batch)
100
101
102

        if len(batches) == 0:
            raise ValueError("All batches are empty")
Olivier Dehaene's avatar
Olivier Dehaene committed
103
104

        if len(batches) > 1:
105
            batch = self.model.batch_type.concatenate(batches)
Olivier Dehaene's avatar
Olivier Dehaene committed
106
107
108
        else:
            batch = batches[0]

109
        generations, next_batch = self.model.generate_token(batch)
Olivier Dehaene's avatar
Olivier Dehaene committed
110
111
        self.cache.set(next_batch)

112
113
        return generate_pb2.DecodeResponse(
            generations=[generation.to_pb() for generation in generations],
Olivier Dehaene's avatar
Olivier Dehaene committed
114
115
116
            batch=next_batch.to_pb() if next_batch else None,
        )

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
117

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
118
def serve(
119
120
121
122
123
124
125
    model_id: str,
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
    dtype: Optional[str],
    trust_remote_code: bool,
    uds_path: Path,
126
127
):
    async def serve_inner(
128
129
130
131
132
133
        model_id: str,
        revision: Optional[str],
        sharded: bool = False,
        quantize: Optional[str] = None,
        dtype: Optional[str] = None,
        trust_remote_code: bool = False,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
134
    ):
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
135
        unix_socket_template = "unix://{}-{}"
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
136
137
        if sharded:
            server_urls = [
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
138
                unix_socket_template.format(uds_path, rank)
139
                for rank in range(int(os.environ["WORLD_SIZE"]))
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
140
            ]
141
            local_url = server_urls[int(os.environ["RANK"])]
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
142
        else:
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
143
            local_url = unix_socket_template.format(uds_path, 0)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
144
145
            server_urls = [local_url]

146
        try:
147
148
149
            model = get_model(
                model_id, revision, sharded, quantize, dtype, trust_remote_code
            )
150
151
152
        except Exception:
            logger.exception("Error when initializing model")
            raise
153

154
155
156
157
158
        if quantize == "gptq":
            try:
                # When using GPTQ, Exllama kernels need some global kernels
                # For which we have the finale shapes only after the model has loaded
                # This will allocate those buffers.
159
160
                from text_generation_server.utils.gptq.exllama import (
                    create_exllama_buffers,
161
                    set_device,
162
163
                )

164
                set_device(model.device)
165
166
167
168
                create_exllama_buffers()
            except ImportError:
                pass

169
170
171
172
173
174
        server = aio.server(
            interceptors=[
                ExceptionInterceptor(),
                UDSOpenTelemetryAioServerInterceptor(),
            ]
        )
Olivier Dehaene's avatar
Olivier Dehaene committed
175
176
        generate_pb2_grpc.add_TextGenerationServiceServicer_to_server(
            TextGenerationService(model, Cache(), server_urls), server
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
177
178
        )
        SERVICE_NAMES = (
Olivier Dehaene's avatar
Olivier Dehaene committed
179
            generate_pb2.DESCRIPTOR.services_by_name["TextGenerationService"].full_name,
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
180
181
182
183
            reflection.SERVICE_NAME,
        )
        reflection.enable_server_reflection(SERVICE_NAMES, server)
        server.add_insecure_port(local_url)
184

Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
185
        await server.start()
186

187
        logger.info("Server started at {}".format(local_url))
188

Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
189
190
191
        try:
            await server.wait_for_termination()
        except KeyboardInterrupt:
192
            logger.info("Signal received. Shutting down")
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
193
            await server.stop(0)
Olivier Dehaene's avatar
Init  
Olivier Dehaene committed
194

195
196
197
    asyncio.run(
        serve_inner(model_id, revision, sharded, quantize, dtype, trust_remote_code)
    )