__init__.py 29.7 KB
Newer Older
1
import torch
2
import enum
Nicolas Patry's avatar
Nicolas Patry committed
3
import os
4

5
from loguru import logger
6
from transformers.configuration_utils import PretrainedConfig
7
from transformers.models.auto import modeling_auto
Nicolas Patry's avatar
Nicolas Patry committed
8
from huggingface_hub import hf_hub_download, HfApi
9
from typing import Optional
10
from pathlib import Path
11

Nicolas Patry's avatar
Nicolas Patry committed
12
from text_generation_server.utils.speculate import get_speculate, set_speculate
13
14
from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM
15
from text_generation_server.models.flash_causal_lm import FlashCausalLM
16
from text_generation_server.models.bloom import BLOOMSharded
17
from text_generation_server.models.mpt import MPTSharded
18
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
19
from text_generation_server.models.rw import RW
20
21
from text_generation_server.models.opt import OPTSharded
from text_generation_server.models.galactica import GalacticaSharded
22
23
from text_generation_server.models.santacoder import SantaCoder
from text_generation_server.models.t5 import T5Sharded
24
from text_generation_server.models.gpt_neox import GPTNeoxSharded
drbh's avatar
drbh committed
25
from text_generation_server.models.phi import Phi
26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True

# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True

# Disable gradients
torch.set_grad_enabled(False)

__all__ = [
    "Model",
    "BLOOMSharded",
    "CausalLM",
    "GalacticaSharded",
    "Seq2SeqLM",
    "SantaCoder",
    "OPTSharded",
    "T5Sharded",
    "get_model",
]

49
FLASH_ATT_ERROR_MESSAGE = "{} requires Flash Attention enabled models."
50

51
FLASH_ATTENTION = True
52

53
try:
54
    from text_generation_server.models.flash_rw import FlashRWSharded
55
    from text_generation_server.models.flash_gpt2 import FlashGPT2
56
57
58
59
    from text_generation_server.models.flash_neox import FlashNeoXSharded
    from text_generation_server.models.flash_llama import (
        FlashLlama,
    )
OlivierDehaene's avatar
OlivierDehaene committed
60
61
62
    from text_generation_server.models.flash_qwen2 import (
        FlashQwen2,
    )
OlivierDehaene's avatar
OlivierDehaene committed
63
64
65
    from text_generation_server.models.flash_cohere import (
        FlashCohere,
    )
66
67
68
    from text_generation_server.models.flash_gemma import (
        FlashGemma,
    )
drbh's avatar
drbh committed
69
70
71
    from text_generation_server.models.pali_gemma import (
        PaliGemma,
    )
72
73
    from text_generation_server.models.flash_santacoder import (
        FlashSantacoderSharded,
74
    )
75
    from text_generation_server.models.idefics import IDEFICSSharded
76
    from text_generation_server.models.llava_next import LlavaNext
Nicolas Patry's avatar
Nicolas Patry committed
77
    from text_generation_server.models.idefics2 import Idefics2
78
79
    from text_generation_server.models.flash_mistral import FlashMistral
    from text_generation_server.models.flash_mixtral import FlashMixtral
drbh's avatar
drbh committed
80
    from text_generation_server.models.flash_phi import FlashPhi
OlivierDehaene's avatar
OlivierDehaene committed
81
    from text_generation_server.models.flash_starcoder2 import FlashStarcoder2
82
    from text_generation_server.models.flash_dbrx import FlashDbrx
fxmarty's avatar
fxmarty committed
83
84
85
86
    from text_generation_server.utils.flash_attn import (
        HAS_FLASH_ATTN_V2_CUDA,
        HAS_FLASH_ATTN_V2_ROCM,
    )
87
88
except ImportError as e:
    logger.warning(f"Could not import Flash Attention enabled models: {e}")
89
    FLASH_ATTENTION = False
90
    HAS_FLASH_ATTN_V2_CUDA = False
fxmarty's avatar
fxmarty committed
91
    HAS_FLASH_ATTN_V2_ROCM = False
92

93
if FLASH_ATTENTION:
94
    __all__.append(FlashGPT2)
95
    __all__.append(FlashNeoXSharded)
96
    __all__.append(FlashRWSharded)
97
    __all__.append(FlashSantacoderSharded)
98
    __all__.append(FlashLlama)
99
    __all__.append(IDEFICSSharded)
100
    __all__.append(FlashMistral)
OlivierDehaene's avatar
OlivierDehaene committed
101
    __all__.append(FlashMixtral)
102
    __all__.append(FlashDbrx)
drbh's avatar
drbh committed
103
    __all__.append(FlashPhi)
OlivierDehaene's avatar
OlivierDehaene committed
104
    __all__.append(FlashQwen2)
OlivierDehaene's avatar
OlivierDehaene committed
105
    __all__.append(FlashStarcoder2)
OlivierDehaene's avatar
OlivierDehaene committed
106
107
    __all__.append(FlashGemma)
    __all__.append(FlashCohere)
OlivierDehaene's avatar
OlivierDehaene committed
108

drbh's avatar
drbh committed
109
110
111
112
113
114
115
116
117
MAMBA_AVAILABLE = True
try:
    from text_generation_server.models.mamba import Mamba
except ImportError as e:
    logger.warning(f"Could not import Mamba: {e}")
    MAMBA_AVAILABLE = False

if MAMBA_AVAILABLE:
    __all__.append(Mamba)
OlivierDehaene's avatar
OlivierDehaene committed
118

119

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
class ModelType(enum.Enum):
    IDEFICS2 = {
        "type": "idefics2",
        "name": "Idefics 2",
        "url": "https://huggingface.co/HuggingFaceM4/idefics2-8b",
        "multimodal": True,
    }
    LLAVA_NEXT = {
        "type": "llava_next",
        "name": "Llava Next (1.6)",
        "url": "https://huggingface.co/llava-hf/llava-v1.6-vicuna-13b-hf",
        "multimodal": True,
    }
    LLAMA = {
        "type": "llama",
        "name": "Llama",
        "url": "https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct",
    }
    PHI3 = {
        "type": "phi3",
        "name": "Phi 3",
        "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct",
    }
    GEMMA = {
        "type": "gemma",
        "name": "Gemma",
        "url": "https://huggingface.co/google/gemma-7b",
    }
    COHERE = {
        "type": "cohere",
        "name": "Cohere",
        "url": "https://huggingface.co/CohereForAI/c4ai-command-r-plus",
    }
    DBRX = {
        "type": "dbrx",
        "name": "Dbrx",
        "url": "https://huggingface.co/databricks/dbrx-instruct",
    }
    MAMBA = {
        "type": "ssm",
        "name": "Mamba",
        "url": "https://huggingface.co/state-spaces/mamba-2.8b-slimpj",
    }
    MISTRAL = {
        "type": "mistral",
        "name": "Mistral",
        "url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2",
    }
    MIXTRAL = {
        "type": "mixtral",
        "name": "Mixtral",
        "url": "https://huggingface.co/mistralai/Mixtral-8x22B-Instruct-v0.1",
    }
    GPT_BIGCODE = {
        "type": "gpt_bigcode",
        "name": "Gpt Bigcode",
        "url": "https://huggingface.co/bigcode/gpt_bigcode-santacoder",
    }
    PHI = {
        "type": "phi",
        "name": "Phi",
        "url": "https://huggingface.co/microsoft/phi-1_5",
    }
    BAICHUAN = {
        "type": "baichuan",
        "name": "Baichuan",
        "url": "https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat",
    }
    FALCON = {
        "type": "falcon",
        "name": "Falcon",
        "url": "https://huggingface.co/tiiuae/falcon-7b-instruct",
    }
    STARCODER2 = {
        "type": "starcoder2",
        "name": "StarCoder 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    QWEN2 = {
        "type": "qwen2",
        "name": "Qwen 2",
        "url": "https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1",
    }
    OPT = {
        "type": "opt",
        "name": "Opt",
        "url": "https://huggingface.co/facebook/opt-6.7b",
    }
    T5 = {
        "type": "t5",
        "name": "T5",
        "url": "https://huggingface.co/google/flan-t5-xxl",
    }
    GALACTICA = {
        "type": "galactica",
        "name": "Galactica",
        "url": "https://huggingface.co/facebook/galactica-120b",
    }
    SANTACODER = {
        "type": "santacoder",
        "name": "SantaCoder",
        "url": "https://huggingface.co/bigcode/santacoder",
    }
    BLOOM = {
        "type": "bloom",
        "name": "Bloom",
        "url": "https://huggingface.co/bigscience/bloom-560m",
    }
    MPT = {
        "type": "mpt",
        "name": "Mpt",
        "url": "https://huggingface.co/mosaicml/mpt-7b-instruct",
    }
    GPT2 = {
        "type": "gpt2",
        "name": "Gpt2",
        "url": "https://huggingface.co/openai-community/gpt2",
    }
    GPT_NEOX = {
        "type": "gpt_neox",
        "name": "Gpt Neox",
        "url": "https://huggingface.co/EleutherAI/gpt-neox-20b",
    }
    IDEFICS = {
        "type": "idefics",
        "name": "Idefics",
        "url": "https://huggingface.co/HuggingFaceM4/idefics-9b",
        "multimodal": True,
    }


__GLOBALS = locals()
for data in ModelType:
    __GLOBALS[data.name] = data.value["type"]


256
def get_model(
257
258
259
260
    model_id: str,
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
Nicolas Patry's avatar
Nicolas Patry committed
261
    speculate: Optional[int],
262
    dtype: Optional[str],
263
    trust_remote_code: bool,
264
) -> Model:
265
    if dtype is None:
266
267
268
269
270
271
272
        if quantize in ["awq", "gptq"]:
            # These quantizers only work with float16 params.
            dtype = torch.float16
        else:
            # Keep it as default for now and let
            # every model resolve their own default dtype.
            dtype = None
273
274
275
276
277
278
279
    elif dtype == "float16":
        dtype = torch.float16
    elif dtype == "bfloat16":
        dtype = torch.bfloat16
    else:
        raise RuntimeError(f"Unknown dtype {dtype}")

Nicolas Patry's avatar
Nicolas Patry committed
280
281
282
283
284
    if speculate is not None:
        set_speculate(speculate)
    else:
        set_speculate(0)

OlivierDehaene's avatar
v0.8.2  
OlivierDehaene committed
285
286
287
    config_dict, _ = PretrainedConfig.get_config_dict(
        model_id, revision=revision, trust_remote_code=trust_remote_code
    )
Nicolas Patry's avatar
Nicolas Patry committed
288
    model_type = config_dict.get("model_type", None)
Nicolas Patry's avatar
Nicolas Patry committed
289

Nicolas Patry's avatar
Nicolas Patry committed
290
    speculator = None
Nicolas Patry's avatar
Nicolas Patry committed
291
    if "medusa_num_heads" in config_dict:
292
293
        medusa_model_id = model_id
        medusa_revision = revision
Nicolas Patry's avatar
Nicolas Patry committed
294
295
296
297
298
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_medusa = config_dict["medusa_num_heads"]
        if speculate is not None:
            if speculate > speculate_medusa:
OlivierDehaene's avatar
OlivierDehaene committed
299
                raise RuntimeError(
OlivierDehaene's avatar
OlivierDehaene committed
300
                    f"Speculate is set to `{speculate}` but this medusa models only has `{speculate_medusa}` heads, please make them match"
OlivierDehaene's avatar
OlivierDehaene committed
301
                )
Nicolas Patry's avatar
Nicolas Patry committed
302
303
304
305
306
307
308
309
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_medusa)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
Nicolas Patry's avatar
Nicolas Patry committed
310
311
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
312
313
314
315
316
317
318
319
320
321
        is_local = Path(medusa_model_id).exists()
        if not is_local:
            medusa_config = hf_hub_download(
                medusa_model_id, revision=medusa_revision, filename="config.json"
            )
            hf_hub_download(
                medusa_model_id,
                revision=medusa_revision,
                filename="medusa_lm_head.safetensors",
            )
Nicolas Patry's avatar
Nicolas Patry committed
322
323
324
325
            speculator = {
                "path": Path(medusa_config).parent,
                "model_paths": ["medusa_lm_head.safetensors"],
            }
326
        else:
Nicolas Patry's avatar
Nicolas Patry committed
327
328
329
330
            speculator = {
                "path": Path(medusa_model_id),
                "model_paths": ["medusa_lm_head.safetensors"],
            }
331

Nicolas Patry's avatar
Nicolas Patry committed
332
        method = "medusa"
Nicolas Patry's avatar
Nicolas Patry committed
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
    elif model_type == "mlp_speculator":
        mlp_model_id = model_id
        mlp_revision = revision
        model_id = config_dict["base_model_name_or_path"]
        revision = "main"
        speculate_mlp = config_dict["n_predict"]
        if speculate is not None:
            if speculate > speculate_mlp:
                raise RuntimeError(
                    f"Speculate is set to `{speculate}` but this mlp_speculator models only has `{speculate_mlp}` heads, please make them match"
                )
            else:
                set_speculate(speculate)
        else:
            set_speculate(speculate_mlp)

        config_dict, _ = PretrainedConfig.get_config_dict(
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        # Reload model type from parent.
        model_type = config_dict.get("model_type", None)
        is_local = Path(mlp_model_id).exists()
        extension = ".safetensors"
        if not is_local:
            mlp_speculator_config = hf_hub_download(
                mlp_model_id, revision=mlp_revision, filename="config.json"
            )
            api = HfApi()
            info = api.model_info(mlp_model_id, revision=mlp_revision)
            filenames = [
                s.rfilename
                for s in info.siblings
                if s.rfilename.endswith(extension)
                and len(s.rfilename.split("/")) == 1
                and "arguments" not in s.rfilename
                and "args" not in s.rfilename
                and "training" not in s.rfilename
            ]
            for filename in filenames:
                hf_hub_download(
                    mlp_model_id,
                    revision=mlp_revision,
                    filename=filename,
                )
            speculator = {
                "path": Path(mlp_speculator_config).parent,
                "model_paths": filenames,
            }
        else:
            speculator = Path(mlp_model_id)
            filenames = [p for p in os.listdir(speculator) if p.endswith(extension)]
            speculator = {"path": speculator, "model_paths": filenames}
        method = "mlp_speculator"
Nicolas Patry's avatar
Nicolas Patry committed
386
387
388
389
390
391
392
    else:
        method = "n-gram"

    speculate = get_speculate()
    if speculate > 0:
        logger.info(f"Using speculation {method} with {speculate} input ids.")

drbh's avatar
drbh committed
393
394
395
396
397
398
399
400
401
    if model_type is None:
        # TODO: fix how we determine model type for Mamba
        if "ssm_cfg" in config_dict:
            # *only happens in Mamba case
            model_type = "ssm"
        else:
            raise RuntimeError(
                f"Could not determine model type for {model_id} revision {revision}"
            )
402
403
404
405
406
407
408
409
    quantization_config = config_dict.get("quantization_config", None)
    if quantization_config is not None and quantize is None:
        method = quantization_config.get("quant_method", None)
        if method in {"gptq", "awq"}:
            logger.info(f"Auto selecting quantization method {method}")
            quantize = method
        else:
            logger.info(f"Unknown quantization method {method}")
drbh's avatar
drbh committed
410

411
    if model_type == MAMBA:
drbh's avatar
drbh committed
412
413
414
415
        return Mamba(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
416
            speculator=speculator,
drbh's avatar
drbh committed
417
418
419
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )
420

OlivierDehaene's avatar
OlivierDehaene committed
421
422
423
424
425
    if model_id.startswith("facebook/galactica"):
        return GalacticaSharded(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
426
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
427
428
429
430
            dtype=dtype,
            trust_remote_code=trust_remote_code,
        )

431
    if (
432
433
        model_type == GPT_BIGCODE
        or model_type == GPT2
434
435
        and model_id.startswith("bigcode/")
    ):
436
        if FLASH_ATTENTION:
437
438
439
440
            return FlashSantacoderSharded(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
441
                speculator=speculator,
442
                dtype=dtype,
443
444
                trust_remote_code=trust_remote_code,
            )
445
446
447
448
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Santacoder")
            )
449
        else:
450
            return SantaCoder(
451
452
453
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
454
                speculator=speculator,
455
                dtype=dtype,
456
457
                trust_remote_code=trust_remote_code,
            )
458

459
    if model_type == BLOOM:
460
        return BLOOMSharded(
461
462
463
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
464
            speculator=speculator,
465
466
            dtype=dtype,
            trust_remote_code=trust_remote_code,
467
        )
468
    elif model_type == MPT:
469
        return MPTSharded(
OlivierDehaene's avatar
OlivierDehaene committed
470
471
472
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
473
            speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
474
475
            dtype=dtype,
            trust_remote_code=trust_remote_code,
476
        )
477
    elif model_type == GPT2:
478
        if FLASH_ATTENTION:
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
            try:
                return FlashGPT2(
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
            except RuntimeError as e:
                # Lots of legacy models with various weight names.
                logger.warning(f"Couldn't load flash gpt2 variant: {e}")
                return CausalLM(
                    model_id,
                    revision,
                    quantize=quantize,
                    speculator=speculator,
                    dtype=dtype,
                    trust_remote_code=trust_remote_code,
                )
499
500
501
502
503
504
505
506
507
508
509
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded GPT-2"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
510
    elif model_type == GPT_NEOX:
511
512
513
514
515
        if FLASH_ATTENTION:
            return FlashNeoXSharded(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
516
                speculator=speculator,
517
                dtype=dtype,
518
519
520
521
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
            return GPTNeoxSharded(
522
523
524
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
525
                speculator=speculator,
526
                dtype=dtype,
527
528
                trust_remote_code=trust_remote_code,
            )
529
        else:
530
            return CausalLM(
531
532
533
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
534
                speculator=speculator,
535
                dtype=dtype,
536
537
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
538

539
    elif model_type == PHI:
drbh's avatar
drbh committed
540
541
542
543
544
        if FLASH_ATTENTION:
            return FlashPhi(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
545
                speculator=speculator,
drbh's avatar
drbh committed
546
547
548
549
550
551
552
553
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
554
                speculator=speculator,
drbh's avatar
drbh committed
555
556
557
558
559
560
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

    elif model_type == "phi-msft":
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
561
562
563
            raise NotImplementedError(
                "Legacy phi-msft is not supported with Flash Attention"
            )
drbh's avatar
drbh committed
564
565
566
567
568
        else:
            return Phi(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
569
                speculator=speculator,
drbh's avatar
drbh committed
570
571
572
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
573

574
    elif model_type == LLAMA or model_type == BAICHUAN or model_type == PHI3:
575
576
        if FLASH_ATTENTION:
            return FlashLlama(
577
578
579
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
580
                speculator=speculator,
581
                dtype=dtype,
582
583
                trust_remote_code=trust_remote_code,
            )
584
585
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Llama"))
586
        else:
587
            return CausalLM(
588
589
590
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
591
                speculator=speculator,
592
                dtype=dtype,
593
594
                trust_remote_code=trust_remote_code,
            )
595
    if model_type == GEMMA:
596
597
598
599
600
        if FLASH_ATTENTION:
            return FlashGemma(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
601
                speculator=speculator,
602
603
604
605
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
OlivierDehaene's avatar
OlivierDehaene committed
606
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Gemma"))
607
608
609
610
611
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
612
                speculator=speculator,
613
614
615
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
616

617
    if model_type == COHERE:
OlivierDehaene's avatar
OlivierDehaene committed
618
619
620
621
622
        if FLASH_ATTENTION:
            return FlashCohere(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
623
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
624
625
626
627
628
629
630
631
632
633
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Cohere"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
634
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
635
636
637
638
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

639
    if model_type == DBRX:
640
641
642
643
644
        if FLASH_ATTENTION:
            return FlashDbrx(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
645
                speculator=speculator,
646
647
648
649
650
651
652
653
654
655
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded DBRX"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
656
                speculator=speculator,
657
658
659
660
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

661
    if model_type in ["RefinedWeb", "RefinedWebModel", FALCON]:
662
663
        if sharded:
            if FLASH_ATTENTION:
664
                if config_dict.get("alibi", False):
665
666
667
668
669
                    raise NotImplementedError("sharded is not supported for this model")
                return FlashRWSharded(
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
670
                    speculator=speculator,
671
                    dtype=dtype,
672
673
                    trust_remote_code=trust_remote_code,
                )
674
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Falcon"))
675
        else:
676
            if FLASH_ATTENTION and not config_dict.get("alibi", False):
677
                return FlashRWSharded(
678
679
680
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
681
                    speculator=speculator,
682
                    dtype=dtype,
683
684
685
686
687
688
689
                    trust_remote_code=trust_remote_code,
                )
            else:
                return RW(
                    model_id,
                    revision,
                    quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
690
                    speculator=speculator,
691
                    dtype=dtype,
692
693
694
                    trust_remote_code=trust_remote_code,
                )

695
    if model_type == MISTRAL:
696
697
        sliding_window = config_dict.get("sliding_window", -1)
        if (
fxmarty's avatar
fxmarty committed
698
699
700
701
            ((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
            or HAS_FLASH_ATTN_V2_CUDA
            or HAS_FLASH_ATTN_V2_ROCM
        ):
702
703
704
705
            return FlashMistral(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
706
                speculator=speculator,
707
708
709
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
710
711
712
713
714
715
716
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mistral"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
717
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
718
719
720
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
721

722
    if model_type == MIXTRAL:
723
724
        sliding_window = config_dict.get("sliding_window", -1)
        if (
fxmarty's avatar
fxmarty committed
725
726
727
728
            ((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
            or HAS_FLASH_ATTN_V2_CUDA
            or HAS_FLASH_ATTN_V2_ROCM
        ):
OlivierDehaene's avatar
OlivierDehaene committed
729
730
731
732
            return FlashMixtral(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
733
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
734
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
735
736
                trust_remote_code=trust_remote_code,
            )
OlivierDehaene's avatar
OlivierDehaene committed
737
738
739
740
741
742
743
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Mixtral"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
744
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
745
746
747
748
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

749
    if model_type == STARCODER2:
OlivierDehaene's avatar
OlivierDehaene committed
750
751
        sliding_window = config_dict.get("sliding_window", -1)
        if (
fxmarty's avatar
fxmarty committed
752
753
754
755
            ((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
            or HAS_FLASH_ATTN_V2_CUDA
            or HAS_FLASH_ATTN_V2_ROCM
        ):
OlivierDehaene's avatar
OlivierDehaene committed
756
757
758
759
760
            return FlashStarcoder2(
                model_id,
                revision,
                quantize=quantize,
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
761
762
763
764
765
766
767
768
769
770
771
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
            raise NotImplementedError(
                FLASH_ATT_ERROR_MESSAGE.format("Sharded Starcoder2")
            )
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
772
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
773
774
775
776
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )

777
    if model_type == QWEN2:
OlivierDehaene's avatar
OlivierDehaene committed
778
779
        sliding_window = config_dict.get("sliding_window", -1)
        if (
fxmarty's avatar
fxmarty committed
780
781
782
783
            ((sliding_window is None or sliding_window == -1) and FLASH_ATTENTION)
            or HAS_FLASH_ATTN_V2_CUDA
            or HAS_FLASH_ATTN_V2_ROCM
        ):
OlivierDehaene's avatar
OlivierDehaene committed
784
785
786
787
788
789
790
791
792
793
794
795
796
797
            return FlashQwen2(
                model_id,
                revision,
                quantize=quantize,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        elif sharded:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Sharded Qwen2"))
        else:
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
798
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
799
                dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
800
801
                trust_remote_code=trust_remote_code,
            )
802

803
    if model_type == OPT:
804
        return OPTSharded(
805
806
807
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
808
            speculator=speculator,
809
810
            dtype=dtype,
            trust_remote_code=trust_remote_code,
811
        )
812

813
    if model_type == T5:
814
815
816
817
        return T5Sharded(
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
818
            speculator=speculator,
819
            dtype=dtype,
820
821
            trust_remote_code=trust_remote_code,
        )
822
    if model_type == IDEFICS:
823
        if FLASH_ATTENTION:
OlivierDehaene's avatar
OlivierDehaene committed
824
825
826
827
            return IDEFICSSharded(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
828
                speculator=speculator,
OlivierDehaene's avatar
OlivierDehaene committed
829
830
831
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
832
833
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
834
    if model_type == IDEFICS2:
Nicolas Patry's avatar
Nicolas Patry committed
835
836
837
838
839
        if FLASH_ATTENTION:
            return Idefics2(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
840
                speculator=speculator,
Nicolas Patry's avatar
Nicolas Patry committed
841
842
843
844
845
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
drbh's avatar
drbh committed
846
847
848
849
850
851
852
853
854
855
856
857
    if model_type == "paligemma":
        if FLASH_ATTENTION:
            return PaliGemma(
                model_id,
                revision,
                quantize=quantize,
                speculator=speculator,
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("Idefics"))
858

859
    if model_type == LLAVA_NEXT:
860
861
862
863
864
        if FLASH_ATTENTION:
            return LlavaNext(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
865
                speculator=speculator,
866
867
868
869
870
871
                dtype=dtype,
                trust_remote_code=trust_remote_code,
            )
        else:
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format("LlavaNext"))

872
    if sharded:
873
        raise NotImplementedError("sharded is not supported for AutoModel")
874
    if quantize == "gptq":
875
        raise NotImplementedError(
876
877
            "gptq quantization is not supported for AutoModel, you can try to quantize it with `text-generation-server quantize ORIGINAL_MODEL_ID NEW_MODEL_ID`"
        )
878
    if quantize == "awq":
879
        raise NotImplementedError("awq quantization is not supported for AutoModel")
Nicolas Patry's avatar
Nicolas Patry committed
880
    elif (quantize == "bitsandbytes-fp4") or (quantize == "bitsandbytes-nf4"):
881
        raise NotImplementedError("4bit quantization is not supported for AutoModel")
OlivierDehaene's avatar
OlivierDehaene committed
882
    elif quantize == "eetq":
883
        raise NotImplementedError("Eetq quantization is not supported for AutoModel")
884
    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
885
        return CausalLM(
886
887
888
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
889
            speculator=speculator,
890
891
            dtype=dtype,
            trust_remote_code=trust_remote_code,
892
        )
893
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
894
        return Seq2SeqLM(
895
896
897
            model_id,
            revision,
            quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
898
            speculator=speculator,
899
900
            dtype=dtype,
            trust_remote_code=trust_remote_code,
901
902
        )

903
    auto_map = config_dict.get("auto_map", None)
904
905
906
907
908
909
    if trust_remote_code and auto_map is not None:
        if "AutoModelForCausalLM" in auto_map.keys():
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
910
                speculator=speculator,
911
                dtype=dtype,
912
913
                trust_remote_code=trust_remote_code,
            )
914
        if "AutoModelForSeq2SeqLM" in auto_map.keys():
915
916
917
918
            return Seq2SeqLM(
                model_id,
                revision,
                quantize=quantize,
Nicolas Patry's avatar
Nicolas Patry committed
919
                speculator=speculator,
920
                dtype=dtype,
921
922
                trust_remote_code=trust_remote_code,
            )
923
924

    raise ValueError(f"Unsupported model type {model_type}")