__init__.py 4.72 KB
Newer Older
1
2
import torch

3
from loguru import logger
4
from transformers import AutoConfig
5
from transformers.models.auto import modeling_auto
6
7
from typing import Optional

8
9
from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM
10
from text_generation_server.models.flash_causal_lm import FlashCausalLM
11
12
from text_generation_server.models.bloom import BLOOM, BLOOMSharded
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
13
from text_generation_server.models.opt import OPT, OPTSharded
14
15
from text_generation_server.models.galactica import Galactica, GalacticaSharded
from text_generation_server.models.santacoder import SantaCoder
16
from text_generation_server.models.gpt_neox import GPTNeoxSharded
17
from text_generation_server.models.t5 import T5Sharded
18

19
20
try:
    from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
21
    from text_generation_server.models.flash_santacoder import FlashSantacoder
22
    from text_generation_server.models.flash_llama import FlashLlama, FlashLlamaSharded
23

24
    FLASH_ATTENTION = torch.cuda.is_available()
25
except ImportError:
26
    logger.exception("Could not import Flash Attention enabled models")
27
    FLASH_ATTENTION = False
28

29
30
31
32
33
__all__ = [
    "Model",
    "BLOOM",
    "BLOOMSharded",
    "CausalLM",
34
    "FlashCausalLM",
35
36
37
    "Galactica",
    "GalacticaSharded",
    "GPTNeoxSharded",
38
    "Seq2SeqLM",
39
40
    "Galactica",
    "GalacticaSharded",
41
    "SantaCoder",
42
43
    "OPT",
    "OPTSharded",
44
    "T5Sharded",
45
46
47
    "get_model",
]

48
if FLASH_ATTENTION:
49
50
    __all__.append(FlashNeoX)
    __all__.append(FlashNeoXSharded)
51
    __all__.append(FlashSantacoder)
52
53
54
    __all__.append(FlashLlama)
    __all__.append(FlashLlamaSharded)

55
56
57
58
59
FLASH_ATT_ERROR_MESSAGE = (
    "{} requires Flash Attention CUDA kernels to be installed.\n"
    "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
    "or install flash attention with `cd server && make install install-flash-attention`"
)
60

61
62
63
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
64

65
66
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
67

68
69
70
# Disable gradients
torch.set_grad_enabled(False)

71

72
def get_model(
73
    model_id: str, revision: Optional[str], sharded: bool, quantize: bool
74
) -> Model:
75
    if "facebook/galactica" in model_id:
76
77
78
79
80
81
        if sharded:
            return GalacticaSharded(model_id, revision, quantize=quantize)
        else:
            return Galactica(model_id, revision, quantize=quantize)

    if "santacoder" in model_id:
82
83
84
85
86
        if sharded:
            raise NotImplementedError("sharded is not supported for Santacoder")
        else:
            santacoder_cls = FlashSantacoder if FLASH_ATTENTION else SantaCoder
            return santacoder_cls(model_id, revision, quantize)
87

88
    config = AutoConfig.from_pretrained(model_id, revision=revision)
89
    model_type = config.model_type
90

91
    if model_type == "bloom":
92
        if sharded:
93
            return BLOOMSharded(model_id, revision, quantize=quantize)
94
        else:
95
            return BLOOM(model_id, revision, quantize=quantize)
96

97
    if model_type == "gpt_neox":
98
        if sharded:
99
            neox_cls = FlashNeoXSharded if FLASH_ATTENTION else GPTNeoxSharded
100
            return neox_cls(model_id, revision, quantize=quantize)
101
        else:
102
            neox_cls = FlashNeoX if FLASH_ATTENTION else CausalLM
103
            return neox_cls(model_id, revision, quantize=quantize)
104

105
106
107
108
    if model_type == "llama":
        if sharded:
            if FLASH_ATTENTION:
                return FlashLlamaSharded(model_id, revision, quantize=quantize)
109
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Llama"))
110
111
112
113
        else:
            llama_cls = FlashLlama if FLASH_ATTENTION else CausalLM
            return llama_cls(model_id, revision, quantize=quantize)

114
115
116
117
118
119
    if config.model_type == "opt":
        if sharded:
            return OPTSharded(model_id, revision, quantize=quantize)
        else:
            return OPT(model_id, revision, quantize=quantize)

120
    if model_type == "t5":
121
122
123
124
        if sharded:
            return T5Sharded(model_id, revision, quantize=quantize)
        else:
            return Seq2SeqLM(model_id, revision, quantize=quantize)
125
126
127

    if sharded:
        raise ValueError("sharded is not supported for AutoModel")
128
129

    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
130
        return CausalLM(model_id, revision, quantize=quantize)
131
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
132
        return Seq2SeqLM(model_id, revision, quantize=quantize)
133
134

    raise ValueError(f"Unsupported model type {model_type}")