causal_lm.py 31.9 KB
Newer Older
1
import torch
2
import time
3
import torch.distributed
4

5
from dataclasses import dataclass
6
from opentelemetry import trace
7
8
9
10
11
12
from transformers import (
    AutoConfig,
    AutoTokenizer,
    AutoModelForCausalLM,
    PreTrainedTokenizerBase,
)
13
from typing import Optional, Tuple, List, Type, Dict
14

15
16
17
18
19
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
)
20
from text_generation_server.models import Model
Daniël de Kok's avatar
Daniël de Kok committed
21
from text_generation_server.utils.chunks import concat_text_chunks
22
from text_generation_server.utils.import_utils import SYSTEM
23
from text_generation_server.utils.quantization import get_loader
24
from text_generation_server.utils.tokens import batch_top_tokens
25
26
from text_generation_server.models.types import (
    Batch,
Nicolas Patry's avatar
Nicolas Patry committed
27
    Tokens,
28
29
30
31
32
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
33

34
35
tracer = trace.get_tracer(__name__)

36
37

@dataclass
38
class CausalLMBatch(Batch):
39
40
    batch_id: int
    requests: List[generate_pb2.Request]
41
    requests_idx_mapping: Dict[int, int]
OlivierDehaene's avatar
OlivierDehaene committed
42
43
44
45

    # Decoder values
    input_ids: torch.Tensor
    attention_mask: torch.Tensor
46
    position_ids: torch.Tensor
OlivierDehaene's avatar
OlivierDehaene committed
47
48
49
    past_key_values: Optional[List[Tuple]]

    # All tokens
50
    all_input_ids: List[torch.Tensor]
OlivierDehaene's avatar
OlivierDehaene committed
51
52
53

    # Lengths of all generations present in the batch
    input_lengths: List[int]
54
55
    prefix_offsets: List[int]
    read_offsets: List[int]
OlivierDehaene's avatar
OlivierDehaene committed
56
57

    # Generation helpers
58
59
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]
Nicolas Patry's avatar
Nicolas Patry committed
60
61
    top_n_tokens: List[int]
    top_n_tokens_tensor: torch.Tensor
OlivierDehaene's avatar
OlivierDehaene committed
62
63

    # Metadata used for padding
64
    max_input_length: int
65
    padding_right_offset: int
66

67
68
69
    # Maximum number of tokens this batch will grow to
    max_tokens: int

70
71
72
    # Past metadata
    keys_head_dim_last: bool = True

73
74
    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
75
            id=self.batch_id,
76
            request_ids=[r.id for r in self.requests],
77
            size=len(self),
78
            max_tokens=self.max_tokens,
79
80
81
82
        )

    @classmethod
    def from_pb(
83
84
85
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
86
        dtype: torch.dtype,
87
        device: torch.device,
88
89
90
91
    ) -> "CausalLMBatch":
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
92
        top_n_tokens = []
93
94
        prefix_offsets = []
        read_offsets = []
95
        requests_idx_mapping = {}
96
97

        # Parse batch
98
        max_truncation = 0
99
        padding_right_offset = 0
100
        max_decode_tokens = 0
101
102
        for i, r in enumerate(pb.requests):
            requests_idx_mapping[r.id] = i
Daniël de Kok's avatar
Daniël de Kok committed
103
104
            inputs.append(concat_text_chunks(r.input_chunks.chunks))

drbh's avatar
drbh committed
105
106
107
            next_token_choosers.append(
                NextTokenChooser.from_pb(r.parameters, device, tokenizer)
            )
108
109
110
111
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
Nicolas Patry's avatar
Nicolas Patry committed
112
            top_n_tokens.append(r.top_n_tokens)
113
            max_truncation = max(max_truncation, r.truncate)
114
            max_decode_tokens += stopping_criteria.max_new_tokens
115
116
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
117
118
            )

OlivierDehaene's avatar
OlivierDehaene committed
119
        tokenized_inputs = tokenizer(
120
121
122
            inputs,
            return_tensors="pt",
            padding=True,
123
            return_token_type_ids=False,
124
125
            truncation=True,
            max_length=max_truncation,
126
        ).to(device)
127
128
        for _ in pb.requests:
            input_len = tokenized_inputs["input_ids"].shape[1]
129
            prefix_offsets.append(input_len - 5)
130
            read_offsets.append(input_len)
131

132
133
134
        input_lengths = tokenized_inputs["attention_mask"].sum(1)
        max_input_length = input_lengths.max()

135
136
137
        input_ids = tokenized_inputs["input_ids"]
        # Allocate maximum attention_mask
        attention_mask = input_ids.new_zeros(
138
            (pb.size, max_input_length + padding_right_offset)
139
140
        )
        # Copy tokenizer attention_mask into fully allocated attention_mask
141
        attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
142

143
144
        position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
        position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
145
        all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
Nicolas Patry's avatar
Nicolas Patry committed
146
147
148
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )
149

150
        max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
151

152
153
154
        return cls(
            batch_id=pb.id,
            requests=pb.requests,
155
            requests_idx_mapping=requests_idx_mapping,
156
157
            input_ids=input_ids,
            attention_mask=attention_mask,
158
            position_ids=position_ids,
OlivierDehaene's avatar
OlivierDehaene committed
159
            past_key_values=None,
160
            all_input_ids=list(all_input_ids),
161
            input_lengths=input_lengths.tolist(),
162
163
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
164
165
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
166
167
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
168
            max_input_length=max_input_length.item(),
169
            padding_right_offset=padding_right_offset,
170
            max_tokens=max_tokens,
171
172
        )

173
    @tracer.start_as_current_span("filter")
174
175
    def filter(self, request_ids: List[int]) -> Optional["CausalLMBatch"]:
        if len(request_ids) == 0:
176
            raise ValueError("Batch must have at least one request")
177
        if len(request_ids) == len(self):
178
179
180
181
182
183
            return self

        keep_indices = []

        # New values after filtering
        requests_idx_mapping = {}
184
        requests = []
185
        input_lengths = []
186
187
        prefix_offsets = []
        read_offsets = []
188
189
190
191
192
        all_input_ids = []
        max_input_length = 0

        next_token_choosers = []
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
193
        top_n_tokens = []
194

195
        total_remaining_decode_tokens = 0
196
197
        new_padding_right_offset = 0

198
199
200
        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
            requests_idx_mapping[request_id] = i
201
202
            keep_indices.append(idx)

203
            requests.append(self.requests[idx])
204
205
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
206
207
208
209
210
211
212
            all_input_ids.append(self.all_input_ids[idx])

            request_input_length = self.input_lengths[idx]
            input_lengths.append(request_input_length)
            max_input_length = max(max_input_length, request_input_length)

            next_token_choosers.append(self.next_token_choosers[idx])
213
214
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
Nicolas Patry's avatar
Nicolas Patry committed
215
            top_n_tokens.append(self.top_n_tokens[idx])
216
            remaining_decode_tokens = (
217
218
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
219
220
221
222
            total_remaining_decode_tokens += remaining_decode_tokens
            new_padding_right_offset = max(
                new_padding_right_offset, remaining_decode_tokens
            )
223
224
225
226

        # Apply indices to input_ids, attention mask, past key values and other items that need to be cached
        input_ids = self.input_ids[keep_indices]
        position_ids = self.position_ids[keep_indices]
227
228
        self.attention_mask = self.attention_mask[
            keep_indices,
229
230
231
232
            -(self.padding_right_offset + max_input_length) : (
                self.attention_mask.shape[1] - self.padding_right_offset
            )
            + new_padding_right_offset,
233
234
        ]

235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
        # Ensure that past_key_values tensors can be updated in-place
        if type(self.past_key_values[0]) == tuple:
            self.past_key_values = [list(layer) for layer in self.past_key_values]

        # Update tensors in-place to allow incremental garbage collection
        past_kv_length = max_input_length - 1
        for layer in self.past_key_values:
            past_keys, past_values = layer
            if len(past_keys.shape) == 3:
                # Force past to be of dim [self_size, num_heads, ...] for easy indexing
                past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
                past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
            if self.keys_head_dim_last:
                layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
            else:
                layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
            del past_keys
            layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
            del past_values

Nicolas Patry's avatar
Nicolas Patry committed
255
        top_n_tokens_tensor = self.top_n_tokens_tensor[keep_indices]
256
        max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
257

258
259
260
261
262
263
        self.requests = requests
        self.requests_idx_mapping = requests_idx_mapping
        self.input_ids = input_ids
        self.position_ids = position_ids
        self.all_input_ids = all_input_ids
        self.input_lengths = input_lengths
264
265
        self.prefix_offsets = prefix_offsets
        self.read_offsets = read_offsets
266
267
        self.next_token_choosers = next_token_choosers
        self.stopping_criterias = stopping_criterias
Nicolas Patry's avatar
Nicolas Patry committed
268
269
        self.top_n_tokens = top_n_tokens
        self.top_n_tokens_tensor = top_n_tokens_tensor
270
271
        self.max_input_length = max_input_length
        self.padding_right_offset = new_padding_right_offset
272
        self.max_tokens = max_tokens
273
274

        return self
275

276
    @classmethod
277
    @tracer.start_as_current_span("concatenate")
278
279
    def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
        # Used for padding
280
        total_batch_size = 0
281
        max_input_length = 0
282
283
        padding_right_offset = 0
        for batch in batches:
284
            total_batch_size += len(batch)
285
            max_input_length = max(max_input_length, batch.max_input_length)
286
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
287
288
289

        # Batch attributes
        requests = []
290
        requests_idx_mapping = {}
OlivierDehaene's avatar
OlivierDehaene committed
291
        input_lengths = []
292
293
        prefix_offsets = []
        read_offsets = []
294
295
296
        all_input_ids = []
        next_token_choosers = []
        stopping_criterias = []
Nicolas Patry's avatar
Nicolas Patry committed
297
        top_n_tokens = []
298
        max_tokens = 0
299

OlivierDehaene's avatar
OlivierDehaene committed
300
301
302
        # Batch tensors
        input_ids = None
        attention_mask = None
303
        position_ids = None
OlivierDehaene's avatar
OlivierDehaene committed
304
        past_key_values = []
Nicolas Patry's avatar
Nicolas Patry committed
305
        top_n_tokens_tensor = None
OlivierDehaene's avatar
OlivierDehaene committed
306

307
308
309
310
311
        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
OlivierDehaene's avatar
OlivierDehaene committed
312
            input_lengths.extend(batch.input_lengths)
313
314
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
315
316
317
            all_input_ids.extend(batch.all_input_ids)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)
Nicolas Patry's avatar
Nicolas Patry committed
318
            top_n_tokens.extend(batch.top_n_tokens)
319

320
321
322
323
324
325
326
            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + start_index

327
            # Slicing end index for this batch
328
            end_index = start_index + len(batch)
329
330

            # We only concatenate batches that did at least one step
331
332
            if batch.past_key_values is None:
                raise ValueError("only concatenate prefilled batches")
333

OlivierDehaene's avatar
OlivierDehaene committed
334
335
336
337
            # Create empty tensor
            # input_ids is always of shape [batch_size, 1]
            # We do not need to pad it
            if input_ids is None:
338
                input_ids = batch.input_ids.new_empty((total_batch_size, 1))
OlivierDehaene's avatar
OlivierDehaene committed
339
340
341
342
343
            # Copy to correct indices
            input_ids[start_index:end_index] = batch.input_ids

            # Create padded tensor
            if attention_mask is None:
344
                attention_mask = batch.attention_mask.new_zeros(
345
                    (total_batch_size, max_input_length + padding_right_offset),
346
347
                )

Nicolas Patry's avatar
Nicolas Patry committed
348
349
350
351
352
353
            if top_n_tokens_tensor is None:
                top_n_tokens_tensor = batches[0].top_n_tokens_tensor.new_zeros(
                    total_batch_size,
                )
            top_n_tokens_tensor[start_index:end_index] = batch.top_n_tokens_tensor

354
            # We need to slice the attention mask to remove padding from previous steps
355
            # and to remove unused allocated space
356
            left_offset = max_input_length - batch.max_input_length
357
            batch_left_offset = (
358
                batch.attention_mask.shape[1]
359
                - batch.max_input_length
360
                - batch.padding_right_offset
361
            )
OlivierDehaene's avatar
OlivierDehaene committed
362
            attention_mask[
363
364
365
366
367
368
                start_index:end_index,
                left_offset:-padding_right_offset,
            ] = batch.attention_mask[
                :,
                batch_left_offset : -batch.padding_right_offset,
            ]
369

370
371
372
373
374
375
            # Create empty tensor
            # position_ids is always of shape [batch_size, 1]
            if position_ids is None:
                position_ids = batch.position_ids.new_empty((total_batch_size, 1))
            position_ids[start_index:end_index] = batch.position_ids

376
377
378
379
380
381
            # Shenanigans to get dimensions because BLOOM outputs a past with a different shape
            # BLOOM Keys:   [batch_size * num_heads, head_dim, seq_length]
            # BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
            # And ensure that we can update tensors in-place
            if type(batch.past_key_values[0]) == tuple:
                batch.past_key_values = [
382
383
                    [t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
                    for layer in batch.past_key_values
384
                ]
385
            elif len(batch.past_key_values[0][0].shape) == 3:
386
387
388
389
                for layer in batch.past_key_values:
                    for k, t in enumerate(layer):
                        layer[k] = t.view(len(batch), -1, *t.shape[-2:])

390
391
392
393
            # Add eventual padding tokens that were added while concatenating
            max_tokens += batch.max_tokens + (
                max_input_length - batch.max_input_length
            ) * len(batch)
394

395
396
            start_index = end_index

397
398
399
400
401
402
403
404
405
        first_past_kvs = batches[0].past_key_values
        _, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape

        padded_past_values_shape = (
            total_batch_size,
            num_heads,
            max_input_length - 1,
            head_dim,
        )
406

407
408
409
410
411
412
413
414
415
416
        if batches[0].keys_head_dim_last:
            padded_past_keys_shape = padded_past_values_shape
        else:
            # seq_length is last for BLOOM
            padded_past_keys_shape = (
                total_batch_size,
                num_heads,
                head_dim,
                max_input_length - 1,
            )
417

418
419
420
421
422
423
424
425
426
427
428
429
430
431
        # Iterate over attention layers
        # Concatenate past key values layer by layer to allow incremental garbage collection
        for j in range(len(first_past_kvs)):
            padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
            start_index = 0
            for batch in batches:
                past_keys = batch.past_key_values[j][0]
                # Clear reference to the original tensor
                batch.past_key_values[j][0] = None

                # Slicing end index for this batch
                end_index = start_index + len(batch)
                # We slice the keys to remove the padding from previous batches
                past_seq_len = batch.max_input_length - 1
432
                if batch.keys_head_dim_last:
drbh's avatar
drbh committed
433
434
435
                    padded_past_keys[start_index:end_index, :, -past_seq_len:, :] = (
                        past_keys[:, :, -past_seq_len:, :]
                    )
436
                else:
437
                    # BLOOM case
drbh's avatar
drbh committed
438
439
440
                    padded_past_keys[start_index:end_index, :, :, -past_seq_len:] = (
                        past_keys[:, :, :, -past_seq_len:]
                    )
441
442
443
444
                del past_keys

                start_index = end_index

445
446
447
            padded_past_values = first_past_kvs[j][1].new_zeros(
                padded_past_values_shape
            )
448
449
450
451
452
453
454
455
456
457
            start_index = 0
            for batch in batches:
                past_values = batch.past_key_values[j][1]
                # Clear reference to the original tensor
                batch.past_key_values[j][1] = None

                # Slicing end index for this batch
                end_index = start_index + len(batch)
                # We slice the past values to remove the padding from previous batches
                past_seq_len = batch.max_input_length - 1
drbh's avatar
drbh committed
458
459
460
                padded_past_values[start_index:end_index, :, -past_seq_len:, :] = (
                    past_values[:, :, -past_seq_len:, :]
                )
461
462
                del past_values

463
                # Update values
464
465
466
                start_index = end_index

            past_key_values.append([padded_past_keys, padded_past_values])
467
468
469
470

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
471
            requests_idx_mapping=requests_idx_mapping,
472
            input_ids=input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
473
            attention_mask=attention_mask,
474
            position_ids=position_ids,
OlivierDehaene's avatar
OlivierDehaene committed
475
            past_key_values=past_key_values,
476
            all_input_ids=all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
477
            input_lengths=input_lengths,
478
479
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
480
481
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
Nicolas Patry's avatar
Nicolas Patry committed
482
483
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
484
            max_input_length=max_input_length,
485
            padding_right_offset=padding_right_offset,
486
            keys_head_dim_last=batches[0].keys_head_dim_last,
487
            max_tokens=max_tokens,
488
        )
489

490
491
492
    def __len__(self):
        return len(self.requests)

493

494
495
496
497
498
@dataclass
class CausalLMBatchKeysLast(Batch):
    keys_head_dim_last: bool = False


499
class CausalLM(Model):
500
501
502
    def __init__(
        self,
        model_id: str,
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        model_class,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
        speculator: Optional[str] = None,
        dtype: Optional[torch.dtype] = None,
        default_dtype=torch.float16,
        trust_remote_code: bool = False,
        tokenizer_class=AutoTokenizer,
        config_class=AutoConfig,
        batch_class=CausalLMBatch,
    ):
        self.batch_class = batch_class
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = default_dtype if dtype is None else dtype
        elif SYSTEM == "ipex":
            if hasattr(torch, "xpu") and torch.xpu.is_available():
                device = torch.device(f"xpu:{rank}")
                dtype = default_dtype if dtype is None else dtype
            else:
                device = torch.device("cpu")
                # Float16 doesn't exist on target.
                dtype = torch.bfloat16 if dtype is None else dtype
        else:
            device = torch.device("cpu")
            dtype = torch.float32 if dtype is None else dtype

        tokenizer = tokenizer_class.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )

        config = config_class.from_pretrained(
            model_id,
            revision=revision,
            trust_remote_code=trust_remote_code,
        )
        config.quantize = quantize
        config.speculator = speculator
        if tokenizer.pad_token_id is None:
            tokenizer.pad_token_id = config.pad_token_id

        torch.distributed.barrier(group=self.process_group)
550
551
552
        weights_loader = get_loader(
            quantize=quantize, model_id=model_id, revision=revision
        )
553
554
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(
555
556
557
558
559
            filenames,
            device=device,
            dtype=dtype,
            process_group=self.process_group,
            weights_loader=weights_loader,
560
561
        )

562
563
        prefix = ""
        model = model_class(prefix, config, weights)
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580

        torch.distributed.barrier(group=self.process_group)
        super().__init__(
            model_id=model_id,
            model=model,
            tokenizer=tokenizer,
            requires_padding=True,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
        )

    @classmethod
    def fallback(
        cls,
        model_id: str,
581
        revision: Optional[str] = None,
582
        quantize: Optional[str] = None,
Nicolas Patry's avatar
Nicolas Patry committed
583
        speculator: Optional[str] = None,
584
        dtype: Optional[torch.dtype] = None,
585
        trust_remote_code: bool = False,
586
    ):
Nicolas Patry's avatar
Nicolas Patry committed
587
588
        if speculator:
            raise RuntimeError("Speculator decoding is not enabled for AutoModel")
OlivierDehaene's avatar
OlivierDehaene committed
589

590
591
        if torch.cuda.is_available():
            device = torch.device("cuda")
592
            dtype = torch.float16 if dtype is None else dtype
593
        else:
594
595
596
            if quantize:
                raise ValueError("quantization is not available on CPU")

597
            device = torch.device("cpu")
Wang, Yi's avatar
Wang, Yi committed
598
            dtype = torch.float32 if dtype is None else dtype
599

600
        tokenizer = AutoTokenizer.from_pretrained(
601
602
603
604
605
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
606
        )
607
        model = AutoModelForCausalLM.from_pretrained(
608
            model_id,
609
            revision=revision,
610
            torch_dtype=dtype,
drbh's avatar
drbh committed
611
612
613
614
615
            device_map=(
                "auto"
                if torch.cuda.is_available() and torch.cuda.device_count() > 1
                else None
            ),
616
            load_in_8bit=quantize == "bitsandbytes",
617
            trust_remote_code=trust_remote_code,
618
        )
OlivierDehaene's avatar
OlivierDehaene committed
619
620
621
622
623
        if (
            torch.cuda.is_available()
            and torch.cuda.device_count() == 1
            and quantize != "bitsandbytes"
        ):
624
625
            model = model.cuda()

626
627
628
629
630
631
632
633
634
635
        if tokenizer.pad_token_id is None:
            if model.config.pad_token_id is not None:
                tokenizer.pad_token_id = model.config.pad_token_id
            elif model.config.eos_token_id is not None:
                tokenizer.pad_token_id = model.config.eos_token_id
            elif tokenizer.eos_token_id is not None:
                tokenizer.pad_token_id = tokenizer.eos_token_id
            else:
                tokenizer.add_special_tokens({"pad_token": "[PAD]"})

636
637
638
639
640
641
        self = cls.__new__(
            cls,
        )
        self.batch_class = CausalLMBatch
        super().__init__(
            self,
drbh's avatar
drbh committed
642
            model_id=model_id,
643
            model=model,
644
645
646
647
            tokenizer=tokenizer,
            requires_padding=True,
            dtype=dtype,
            device=device,
648
        )
649
        return self
650
651
652

    @property
    def batch_type(self) -> Type[CausalLMBatch]:
653
        return self.batch_class
654

655
    def forward(
656
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
657
658
659
    ) -> Tuple[
        torch.Tensor, Optional[torch.Tensor], List[Tuple[torch.Tensor, torch.Tensor]]
    ]:
660
        # Model Forward
661
662
663
664
665
666
667
668
669
670
671
        kwargs = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "past_key_values": past_key_values,
            "use_cache": True,
            "return_dict": True,
        }
        if self.has_position_ids:
            kwargs["position_ids"] = position_ids

        outputs = self.model.forward(**kwargs)
672
673
674
675
676
        if isinstance(outputs, tuple):
            outputs, speculative_logits = outputs
        else:
            speculative_logits = None
        return outputs.logits, speculative_logits, outputs.past_key_values
677

678
    @tracer.start_as_current_span("generate_token")
679
680
    def generate_token(
        self, batch: CausalLMBatch
681
682
    ) -> Tuple[List[Generation], Optional[CausalLMBatch], Tuple[int, int]]:
        start = time.time_ns()
683
684
685
        # slice the attention mask to the correct shape
        attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]

686
        logits, speculative_logits, past = self.forward(
687
            batch.input_ids,
688
            attention_mask,
689
690
            batch.position_ids,
            batch.past_key_values,
691
692
        )

693
694
        # Results
        generations: List[Generation] = []
695
        stopped = True
696

Nicolas Patry's avatar
Nicolas Patry committed
697
698
        # Speculation is not active for causal
        accepted_ids = torch.ones_like(batch.input_ids)[:, 0]
Nicolas Patry's avatar
Nicolas Patry committed
699
700
701
        batch_top_token_ids, batch_top_token_logprobs = batch_top_tokens(
            batch.top_n_tokens,
            batch.top_n_tokens_tensor,
702
            torch.log_softmax(logits[:, -1], -1),
Nicolas Patry's avatar
Nicolas Patry committed
703
            accepted_ids,
Nicolas Patry's avatar
Nicolas Patry committed
704
705
        )

706
707
        start_decode = time.time_ns()

708
709
710
        # Zipped iterator
        iterator = zip(
            batch.requests,
OlivierDehaene's avatar
OlivierDehaene committed
711
            batch.input_lengths,
712
713
            batch.prefix_offsets,
            batch.read_offsets,
714
715
716
717
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
Nicolas Patry's avatar
Nicolas Patry committed
718
719
720
            batch.top_n_tokens,
            batch_top_token_ids,
            batch_top_token_logprobs,
721
722
723
724
725
726
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
727
728
            prefix_offset,
            read_offset,
729
730
731
            logits,
            next_token_chooser,
            stopping_criteria,
OlivierDehaene's avatar
OlivierDehaene committed
732
            all_input_ids,
Nicolas Patry's avatar
Nicolas Patry committed
733
734
735
            top_n_tokens,
            top_token_ids,
            top_token_logprobs,
736
737
        ) in enumerate(iterator):
            # Select next token
738
            next_token_id, logprobs = next_token_chooser(
739
                all_input_ids.view(1, -1), logits[-1:, :]
740
            )
741
742

            # Append next token to all tokens
743
            all_input_ids = torch.cat([all_input_ids, next_token_id])
OlivierDehaene's avatar
OlivierDehaene committed
744
745
            new_input_length = input_length + 1

746
747
748
            # Generated token
            next_token_logprob = logprobs[-1, next_token_id]
            next_token_id_squeezed = next_token_id.squeeze()
749
750
            next_token_text, prefix_offset, read_offset = self.decode_token(
                all_input_ids[:, 0], prefix_offset, read_offset
751
            )
752
753

            # Evaluate stopping criteria
754
            stop, reason = stopping_criteria(
755
756
                next_token_id_squeezed,
                next_token_text,
757
            )
758

759
            if not stop:
760
                stopped = False
761

762
763
764
765
766
            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
767
768
                    output_text, _, _ = self.decode_token(
                        all_input_ids[:, 0],
OlivierDehaene's avatar
OlivierDehaene committed
769
770
771
772
773
774
                        prefix_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens
                        - 1,
                        read_offset=len(all_input_ids)
                        - stopping_criteria.current_tokens,
                        skip_special_tokens=True,
775
776
777
778
779
780
781
782
783
784
785
786
787
788
                    )
                    # Get seed
                    if isinstance(next_token_chooser.choice, Sampling):
                        seed = next_token_chooser.choice.seed
                    else:
                        seed = None

                    generated_text = GeneratedText(
                        output_text, stopping_criteria.current_tokens, reason, seed
                    )
                else:
                    generated_text = None

                # Prefill
789
                if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
790
791
792
793
794
795
796
797
798
799
800
801
                    # Remove generated token to only have prefill and add nan for first prompt token
                    prefill_logprobs = [float("nan")] + torch.log_softmax(
                        logits, -1
                    ).gather(1, all_input_ids[1:]).squeeze(1)[
                        -new_input_length:-1
                    ].tolist()
                    prefill_token_ids = all_input_ids[-new_input_length:-1]
                    prefill_texts = self.tokenizer.batch_decode(
                        prefill_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
Nicolas Patry's avatar
Nicolas Patry committed
802
                    prefill_tokens = Tokens(
OlivierDehaene's avatar
OlivierDehaene committed
803
804
805
806
                        prefill_token_ids,
                        prefill_logprobs,
                        prefill_texts,
                        is_special=[],
807
808
809
810
                    )
                else:
                    prefill_tokens = None

Nicolas Patry's avatar
Nicolas Patry committed
811
                if top_n_tokens > 0:
Nicolas Patry's avatar
Nicolas Patry committed
812
                    all_top_tokens = []
drbh's avatar
drbh committed
813
                    for top_token_ids, top_token_logprobs in zip(
814
815
                        top_token_ids, top_token_logprobs
                    ):
Nicolas Patry's avatar
Nicolas Patry committed
816
817
818
819
820
821
                        toptoken_texts = self.tokenizer.batch_decode(
                            top_token_ids,
                            clean_up_tokenization_spaces=False,
                            skip_special_tokens=False,
                        )
                        special_toptokens = [
822
823
                            token_id in self.all_special_ids
                            for token_id in top_token_ids
Nicolas Patry's avatar
Nicolas Patry committed
824
825
826
827
828
829
830
831
832
                        ]
                        top_tokens = Tokens(
                            top_token_ids,
                            top_token_logprobs,
                            toptoken_texts,
                            special_toptokens,
                        )
                        all_top_tokens.append(top_tokens)
                    top_tokens = all_top_tokens
Nicolas Patry's avatar
Nicolas Patry committed
833
834
835
                else:
                    top_tokens = None

836
837
838
                generation = Generation(
                    request.id,
                    prefill_tokens,
Nicolas Patry's avatar
Nicolas Patry committed
839
                    Tokens(
OlivierDehaene's avatar
OlivierDehaene committed
840
841
842
843
844
                        [next_token_id_squeezed],
                        [next_token_logprob],
                        [next_token_text],
                        [next_token_id_squeezed.item() in self.all_special_ids],
                    ),
845
                    generated_text,
Nicolas Patry's avatar
Nicolas Patry committed
846
                    top_tokens,
847
848
                )

849
                generations.append(generation)
850

851
            # Update values
drbh's avatar
drbh committed
852
853
854
            batch.next_token_choosers[i] = batch.next_token_choosers[i].advance_grammar(
                next_token_id_squeezed.item()
            )
855
856
857
            batch.input_ids[i, 0] = next_token_id
            batch.all_input_ids[i] = all_input_ids
            batch.input_lengths[i] = new_input_length
858
859
            batch.prefix_offsets[i] = prefix_offset
            batch.read_offsets[i] = read_offset
860
861
            batch.max_input_length = max(batch.max_input_length, new_input_length)

862
        # We finished all generations in the batch; there is no next batch
863
        if stopped:
864
865
866
            forward_ns = start_decode - start
            decode_ns = time.time_ns() - start_decode
            return generations, None, (forward_ns, decode_ns)
867

868
869
        # Slice unused values from prefill
        batch.input_ids = batch.input_ids[:, :1]
870

871
        # Update attention_mask as we added a new token to input_ids
872
873
874
        batch.attention_mask[:, -batch.padding_right_offset] = 1
        # Decrease right offset
        batch.padding_right_offset -= 1
875

876
        # Update position_ids
877
878
879
880
881
        batch.position_ids = batch.position_ids[:, -1:] + 1

        # Update past key values
        batch.past_key_values = past

882
883
884
        forward_ns = start_decode - start
        decode_ns = time.time_ns() - start_decode
        return generations, batch, (forward_ns, decode_ns)