causal_lm.py 24.6 KB
Newer Older
1
import torch
2
import inspect
3

4
from dataclasses import dataclass
5
from opentelemetry import trace
6
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase
7
from typing import Optional, Tuple, List, Type, Dict
8

9
10
11
12
13
14
15
16
17
from text_generation_server.models import Model
from text_generation_server.models.types import (
    Batch,
    PrefillTokens,
    Generation,
    GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
18

19
20
tracer = trace.get_tracer(__name__)

21
22

@dataclass
23
class CausalLMBatch(Batch):
24
25
    batch_id: int
    requests: List[generate_pb2.Request]
26
    requests_idx_mapping: Dict[int, int]
OlivierDehaene's avatar
OlivierDehaene committed
27
28
29
30

    # Decoder values
    input_ids: torch.Tensor
    attention_mask: torch.Tensor
31
    position_ids: torch.Tensor
OlivierDehaene's avatar
OlivierDehaene committed
32
33
34
    past_key_values: Optional[List[Tuple]]

    # All tokens
35
    all_input_ids: List[torch.Tensor]
OlivierDehaene's avatar
OlivierDehaene committed
36
37
38

    # Lengths of all generations present in the batch
    input_lengths: List[int]
39
40
    prefix_offsets: List[int]
    read_offsets: List[int]
OlivierDehaene's avatar
OlivierDehaene committed
41
42

    # Generation helpers
43
44
    next_token_choosers: List[NextTokenChooser]
    stopping_criterias: List[StoppingCriteria]
OlivierDehaene's avatar
OlivierDehaene committed
45
46

    # Metadata used for padding
47
    max_input_length: int
48
    padding_right_offset: int
49

50
51
52
    # Maximum number of tokens this batch will grow to
    max_tokens: int

53
54
55
    # Past metadata
    keys_head_dim_last: bool = True

56
57
    def to_pb(self) -> generate_pb2.CachedBatch:
        return generate_pb2.CachedBatch(
58
            id=self.batch_id,
59
            request_ids=[r.id for r in self.requests],
60
            size=len(self),
61
            max_tokens=self.max_tokens,
62
63
64
65
        )

    @classmethod
    def from_pb(
66
67
68
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
69
        dtype: torch.dtype,
70
        device: torch.device,
71
72
73
74
    ) -> "CausalLMBatch":
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
75
76
        prefix_offsets = []
        read_offsets = []
77
        requests_idx_mapping = {}
78
79

        # Parse batch
80
        max_truncation = 0
81
        padding_right_offset = 0
82
        max_decode_tokens = 0
83
84
        for i, r in enumerate(pb.requests):
            requests_idx_mapping[r.id] = i
85
            inputs.append(r.inputs)
86
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
87
88
89
90
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
91
            max_truncation = max(max_truncation, r.truncate)
92
            max_decode_tokens += stopping_criteria.max_new_tokens
93
94
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
95
96
            )

OlivierDehaene's avatar
OlivierDehaene committed
97
        tokenized_inputs = tokenizer(
98
99
100
            inputs,
            return_tensors="pt",
            padding=True,
101
            return_token_type_ids=False,
102
103
            truncation=True,
            max_length=max_truncation,
104
        ).to(device)
105
106
        for _ in pb.requests:
            input_len = tokenized_inputs["input_ids"].shape[1]
107
            prefix_offsets.append(input_len - 5)
108
            read_offsets.append(input_len)
109

110
111
112
        input_lengths = tokenized_inputs["attention_mask"].sum(1)
        max_input_length = input_lengths.max()

113
114
115
        input_ids = tokenized_inputs["input_ids"]
        # Allocate maximum attention_mask
        attention_mask = input_ids.new_zeros(
116
            (pb.size, max_input_length + padding_right_offset)
117
118
        )
        # Copy tokenizer attention_mask into fully allocated attention_mask
119
        attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
120

121
122
        position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
        position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
123
        all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
124

125
        max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
126

127
128
129
        return cls(
            batch_id=pb.id,
            requests=pb.requests,
130
            requests_idx_mapping=requests_idx_mapping,
131
132
            input_ids=input_ids,
            attention_mask=attention_mask,
133
            position_ids=position_ids,
OlivierDehaene's avatar
OlivierDehaene committed
134
            past_key_values=None,
135
            all_input_ids=list(all_input_ids),
136
            input_lengths=input_lengths.tolist(),
137
138
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
139
140
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
141
            max_input_length=max_input_length.item(),
142
            padding_right_offset=padding_right_offset,
143
            max_tokens=max_tokens,
144
145
        )

146
    @tracer.start_as_current_span("filter")
147
148
    def filter(self, request_ids: List[int]) -> Optional["CausalLMBatch"]:
        if len(request_ids) == 0:
149
            raise ValueError("Batch must have at least one request")
150
        if len(request_ids) == len(self):
151
152
153
154
155
156
            return self

        keep_indices = []

        # New values after filtering
        requests_idx_mapping = {}
157
        requests = []
158
        input_lengths = []
159
160
        prefix_offsets = []
        read_offsets = []
161
162
163
164
165
166
        all_input_ids = []
        max_input_length = 0

        next_token_choosers = []
        stopping_criterias = []

167
        total_remaining_decode_tokens = 0
168
169
        new_padding_right_offset = 0

170
171
172
        for i, request_id in enumerate(request_ids):
            idx = self.requests_idx_mapping[request_id]
            requests_idx_mapping[request_id] = i
173
174
            keep_indices.append(idx)

175
            requests.append(self.requests[idx])
176
177
            prefix_offsets.append(self.prefix_offsets[idx])
            read_offsets.append(self.read_offsets[idx])
178
179
180
181
182
183
184
            all_input_ids.append(self.all_input_ids[idx])

            request_input_length = self.input_lengths[idx]
            input_lengths.append(request_input_length)
            max_input_length = max(max_input_length, request_input_length)

            next_token_choosers.append(self.next_token_choosers[idx])
185
186
            stopping_criteria = self.stopping_criterias[idx]
            stopping_criterias.append(stopping_criteria)
187
            remaining_decode_tokens = (
188
189
                stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
            )
190
191
192
193
            total_remaining_decode_tokens += remaining_decode_tokens
            new_padding_right_offset = max(
                new_padding_right_offset, remaining_decode_tokens
            )
194
195
196
197

        # Apply indices to input_ids, attention mask, past key values and other items that need to be cached
        input_ids = self.input_ids[keep_indices]
        position_ids = self.position_ids[keep_indices]
198
199
        self.attention_mask = self.attention_mask[
            keep_indices,
200
201
202
203
            -(self.padding_right_offset + max_input_length) : (
                self.attention_mask.shape[1] - self.padding_right_offset
            )
            + new_padding_right_offset,
204
205
        ]

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
        # Ensure that past_key_values tensors can be updated in-place
        if type(self.past_key_values[0]) == tuple:
            self.past_key_values = [list(layer) for layer in self.past_key_values]

        # Update tensors in-place to allow incremental garbage collection
        past_kv_length = max_input_length - 1
        for layer in self.past_key_values:
            past_keys, past_values = layer
            if len(past_keys.shape) == 3:
                # Force past to be of dim [self_size, num_heads, ...] for easy indexing
                past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
                past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
            if self.keys_head_dim_last:
                layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
            else:
                layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
            del past_keys
            layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
            del past_values

226
        max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
227

228
229
230
231
232
233
        self.requests = requests
        self.requests_idx_mapping = requests_idx_mapping
        self.input_ids = input_ids
        self.position_ids = position_ids
        self.all_input_ids = all_input_ids
        self.input_lengths = input_lengths
234
235
        self.prefix_offsets = prefix_offsets
        self.read_offsets = read_offsets
236
237
238
239
        self.next_token_choosers = next_token_choosers
        self.stopping_criterias = stopping_criterias
        self.max_input_length = max_input_length
        self.padding_right_offset = new_padding_right_offset
240
        self.max_tokens = max_tokens
241
242

        return self
243

244
    @classmethod
245
    @tracer.start_as_current_span("concatenate")
246
247
    def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
        # Used for padding
248
        total_batch_size = 0
249
        max_input_length = 0
250
251
        padding_right_offset = 0
        for batch in batches:
252
            total_batch_size += len(batch)
253
            max_input_length = max(max_input_length, batch.max_input_length)
254
            padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
255
256
257

        # Batch attributes
        requests = []
258
        requests_idx_mapping = {}
OlivierDehaene's avatar
OlivierDehaene committed
259
        input_lengths = []
260
261
        prefix_offsets = []
        read_offsets = []
262
263
264
        all_input_ids = []
        next_token_choosers = []
        stopping_criterias = []
265
        max_tokens = 0
266

OlivierDehaene's avatar
OlivierDehaene committed
267
268
269
        # Batch tensors
        input_ids = None
        attention_mask = None
270
        position_ids = None
OlivierDehaene's avatar
OlivierDehaene committed
271
272
        past_key_values = []

273
274
275
276
277
        # Used for slicing correctly inside the tensors
        # Equivalent to a cumsum on batch sizes
        start_index = 0
        for i, batch in enumerate(batches):
            requests.extend(batch.requests)
OlivierDehaene's avatar
OlivierDehaene committed
278
            input_lengths.extend(batch.input_lengths)
279
280
            prefix_offsets.extend(batch.prefix_offsets)
            read_offsets.extend(batch.read_offsets)
281
282
283
284
            all_input_ids.extend(batch.all_input_ids)
            next_token_choosers.extend(batch.next_token_choosers)
            stopping_criterias.extend(batch.stopping_criterias)

285
286
287
288
289
290
291
            if i == 0:
                requests_idx_mapping = batch.requests_idx_mapping
            else:
                # We need to offset the mapping for each batch by the cumulative batch size
                for k, v in batch.requests_idx_mapping.items():
                    requests_idx_mapping[k] = v + start_index

292
            # Slicing end index for this batch
293
            end_index = start_index + len(batch)
294
295

            # We only concatenate batches that did at least one step
296
297
            if batch.past_key_values is None:
                raise ValueError("only concatenate prefilled batches")
298

OlivierDehaene's avatar
OlivierDehaene committed
299
300
301
302
            # Create empty tensor
            # input_ids is always of shape [batch_size, 1]
            # We do not need to pad it
            if input_ids is None:
303
                input_ids = batch.input_ids.new_empty((total_batch_size, 1))
OlivierDehaene's avatar
OlivierDehaene committed
304
305
306
307
308
            # Copy to correct indices
            input_ids[start_index:end_index] = batch.input_ids

            # Create padded tensor
            if attention_mask is None:
309
                attention_mask = batch.attention_mask.new_zeros(
310
                    (total_batch_size, max_input_length + padding_right_offset),
311
312
313
                )

            # We need to slice the attention mask to remove padding from previous steps
314
            # and to remove unused allocated space
315
            left_offset = max_input_length - batch.max_input_length
316
            batch_left_offset = (
317
                batch.attention_mask.shape[1]
318
                - batch.max_input_length
319
                - batch.padding_right_offset
320
            )
OlivierDehaene's avatar
OlivierDehaene committed
321
            attention_mask[
322
323
324
325
326
327
                start_index:end_index,
                left_offset:-padding_right_offset,
            ] = batch.attention_mask[
                :,
                batch_left_offset : -batch.padding_right_offset,
            ]
328

329
330
331
332
333
334
            # Create empty tensor
            # position_ids is always of shape [batch_size, 1]
            if position_ids is None:
                position_ids = batch.position_ids.new_empty((total_batch_size, 1))
            position_ids[start_index:end_index] = batch.position_ids

335
336
337
338
339
340
            # Shenanigans to get dimensions because BLOOM outputs a past with a different shape
            # BLOOM Keys:   [batch_size * num_heads, head_dim, seq_length]
            # BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
            # And ensure that we can update tensors in-place
            if type(batch.past_key_values[0]) == tuple:
                batch.past_key_values = [
341
342
                    [t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
                    for layer in batch.past_key_values
343
                ]
344
            elif len(batch.past_key_values[0][0].shape) == 3:
345
346
347
348
                for layer in batch.past_key_values:
                    for k, t in enumerate(layer):
                        layer[k] = t.view(len(batch), -1, *t.shape[-2:])

349
350
351
352
            # Add eventual padding tokens that were added while concatenating
            max_tokens += batch.max_tokens + (
                max_input_length - batch.max_input_length
            ) * len(batch)
353

354
355
            start_index = end_index

356
357
358
359
360
361
362
363
364
        first_past_kvs = batches[0].past_key_values
        _, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape

        padded_past_values_shape = (
            total_batch_size,
            num_heads,
            max_input_length - 1,
            head_dim,
        )
365

366
367
368
369
370
371
372
373
374
375
        if batches[0].keys_head_dim_last:
            padded_past_keys_shape = padded_past_values_shape
        else:
            # seq_length is last for BLOOM
            padded_past_keys_shape = (
                total_batch_size,
                num_heads,
                head_dim,
                max_input_length - 1,
            )
376

377
378
379
380
381
382
383
384
385
386
387
388
389
390
        # Iterate over attention layers
        # Concatenate past key values layer by layer to allow incremental garbage collection
        for j in range(len(first_past_kvs)):
            padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
            start_index = 0
            for batch in batches:
                past_keys = batch.past_key_values[j][0]
                # Clear reference to the original tensor
                batch.past_key_values[j][0] = None

                # Slicing end index for this batch
                end_index = start_index + len(batch)
                # We slice the keys to remove the padding from previous batches
                past_seq_len = batch.max_input_length - 1
391
                if batch.keys_head_dim_last:
392
393
394
                    padded_past_keys[
                        start_index:end_index, :, -past_seq_len:, :
                    ] = past_keys[:, :, -past_seq_len:, :]
395
                else:
396
397
398
399
400
401
402
403
                    # BLOOM case
                    padded_past_keys[
                        start_index:end_index, :, :, -past_seq_len:
                    ] = past_keys[:, :, :, -past_seq_len:]
                del past_keys

                start_index = end_index

404
405
406
            padded_past_values = first_past_kvs[j][1].new_zeros(
                padded_past_values_shape
            )
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
            start_index = 0
            for batch in batches:
                past_values = batch.past_key_values[j][1]
                # Clear reference to the original tensor
                batch.past_key_values[j][1] = None

                # Slicing end index for this batch
                end_index = start_index + len(batch)
                # We slice the past values to remove the padding from previous batches
                past_seq_len = batch.max_input_length - 1
                padded_past_values[
                    start_index:end_index, :, -past_seq_len:, :
                ] = past_values[:, :, -past_seq_len:, :]
                del past_values

422
                # Update values
423
424
425
                start_index = end_index

            past_key_values.append([padded_past_keys, padded_past_values])
426
427
428
429

        return cls(
            batch_id=batches[0].batch_id,
            requests=requests,
430
            requests_idx_mapping=requests_idx_mapping,
431
            input_ids=input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
432
            attention_mask=attention_mask,
433
            position_ids=position_ids,
OlivierDehaene's avatar
OlivierDehaene committed
434
            past_key_values=past_key_values,
435
            all_input_ids=all_input_ids,
OlivierDehaene's avatar
OlivierDehaene committed
436
            input_lengths=input_lengths,
437
438
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
439
440
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
441
            max_input_length=max_input_length,
442
            padding_right_offset=padding_right_offset,
443
            keys_head_dim_last=batches[0].keys_head_dim_last,
444
            max_tokens=max_tokens,
445
        )
446

447
448
449
    def __len__(self):
        return len(self.requests)

450
451

class CausalLM(Model):
452
453
454
455
    def __init__(
        self,
        model_id: str,
        revision: Optional[str] = None,
456
        quantize: Optional[str] = None,
457
        trust_remote_code: bool = False,
458
    ):
459
460
        if torch.cuda.is_available():
            device = torch.device("cuda")
461
            dtype = torch.float16
462
        else:
463
464
465
            if quantize:
                raise ValueError("quantization is not available on CPU")

466
467
468
            device = torch.device("cpu")
            dtype = torch.float32

469
        tokenizer = AutoTokenizer.from_pretrained(
470
471
472
473
474
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
475
        )
476
        model = AutoModelForCausalLM.from_pretrained(
477
            model_id,
478
            revision=revision,
479
            torch_dtype=dtype,
480
481
482
            device_map="auto"
            if torch.cuda.is_available() and torch.cuda.device_count() > 1
            else None,
483
            load_in_8bit=quantize == "bitsandbytes",
484
            trust_remote_code=trust_remote_code,
485
        )
486
487
488
        if torch.cuda.is_available() and torch.cuda.device_count() == 1:
            model = model.cuda()

489
490
491
492
493
494
495
496
497
498
        if tokenizer.pad_token_id is None:
            if model.config.pad_token_id is not None:
                tokenizer.pad_token_id = model.config.pad_token_id
            elif model.config.eos_token_id is not None:
                tokenizer.pad_token_id = model.config.eos_token_id
            elif tokenizer.eos_token_id is not None:
                tokenizer.pad_token_id = tokenizer.eos_token_id
            else:
                tokenizer.add_special_tokens({"pad_token": "[PAD]"})

499
        super(CausalLM, self).__init__(
500
            model=model,
501
502
503
504
            tokenizer=tokenizer,
            requires_padding=True,
            dtype=dtype,
            device=device,
505
506
507
508
509
        )

    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return CausalLMBatch
510

511
512
    def decode(self, generated_ids: List[int]) -> str:
        return self.tokenizer.decode(
513
            generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
514
515
        )

516
    def forward(
517
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
518
519
    ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
        # Model Forward
520
521
522
523
524
525
526
527
528
529
530
        kwargs = {
            "input_ids": input_ids,
            "attention_mask": attention_mask,
            "past_key_values": past_key_values,
            "use_cache": True,
            "return_dict": True,
        }
        if self.has_position_ids:
            kwargs["position_ids"] = position_ids

        outputs = self.model.forward(**kwargs)
531
        return outputs.logits, outputs.past_key_values
532

533
    @tracer.start_as_current_span("generate_token")
534
535
    def generate_token(
        self, batch: CausalLMBatch
536
    ) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
537
538
539
        # slice the attention mask to the correct shape
        attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]

540
541
        logits, past = self.forward(
            batch.input_ids,
542
            attention_mask,
543
544
            batch.position_ids,
            batch.past_key_values,
545
546
        )

547
548
        # Results
        generations: List[Generation] = []
549
        stopped = True
550
551
552
553

        # Zipped iterator
        iterator = zip(
            batch.requests,
OlivierDehaene's avatar
OlivierDehaene committed
554
            batch.input_lengths,
555
556
            batch.prefix_offsets,
            batch.read_offsets,
557
558
559
560
561
562
563
564
565
566
            logits,
            batch.next_token_choosers,
            batch.stopping_criterias,
            batch.all_input_ids,
        )

        # For each member of the batch
        for i, (
            request,
            input_length,
567
568
            prefix_offset,
            read_offset,
569
570
571
            logits,
            next_token_chooser,
            stopping_criteria,
OlivierDehaene's avatar
OlivierDehaene committed
572
            all_input_ids,
573
574
        ) in enumerate(iterator):
            # Select next token
575
            next_token_id, logprobs = next_token_chooser(
576
                all_input_ids.view(1, -1), logits[-1:, :]
577
            )
578
579

            # Append next token to all tokens
580
            all_input_ids = torch.cat([all_input_ids, next_token_id])
OlivierDehaene's avatar
OlivierDehaene committed
581
582
            new_input_length = input_length + 1

583
584
585
            # Generated token
            next_token_logprob = logprobs[-1, next_token_id]
            next_token_id_squeezed = next_token_id.squeeze()
586
587
            next_token_text, prefix_offset, read_offset = self.decode_token(
                all_input_ids[:, 0], prefix_offset, read_offset
588
            )
589
590

            # Evaluate stopping criteria
591
            stop, reason = stopping_criteria(
592
593
                next_token_id_squeezed,
                next_token_text,
594
            )
595

596
            if not stop:
597
                stopped = False
598

599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
            # Shard generations
            # All generations will be appended in the rust sharded client
            if i % self.world_size == self.rank:
                if stop:
                    # Decode generated tokens
                    output_text = self.decode(
                        all_input_ids[-stopping_criteria.current_tokens :, 0]
                    )
                    # Get seed
                    if isinstance(next_token_chooser.choice, Sampling):
                        seed = next_token_chooser.choice.seed
                    else:
                        seed = None

                    generated_text = GeneratedText(
                        output_text, stopping_criteria.current_tokens, reason, seed
                    )
                else:
                    generated_text = None

                # Prefill
620
                if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
                    # Remove generated token to only have prefill and add nan for first prompt token
                    prefill_logprobs = [float("nan")] + torch.log_softmax(
                        logits, -1
                    ).gather(1, all_input_ids[1:]).squeeze(1)[
                        -new_input_length:-1
                    ].tolist()
                    prefill_token_ids = all_input_ids[-new_input_length:-1]
                    prefill_texts = self.tokenizer.batch_decode(
                        prefill_token_ids,
                        clean_up_tokenization_spaces=False,
                        skip_special_tokens=False,
                    )
                    prefill_tokens = PrefillTokens(
                        prefill_token_ids, prefill_logprobs, prefill_texts
                    )
                else:
                    prefill_tokens = None

                generation = Generation(
                    request.id,
                    prefill_tokens,
                    next_token_id_squeezed,
                    next_token_logprob,
                    next_token_text,
                    next_token_id_squeezed.item() in self.all_special_ids,
                    generated_text,
647
648
                )

649
                generations.append(generation)
650

651
652
653
654
            # Update values
            batch.input_ids[i, 0] = next_token_id
            batch.all_input_ids[i] = all_input_ids
            batch.input_lengths[i] = new_input_length
655
656
            batch.prefix_offsets[i] = prefix_offset
            batch.read_offsets[i] = read_offset
657
658
            batch.max_input_length = max(batch.max_input_length, new_input_length)

659
        # We finished all generations in the batch; there is no next batch
660
        if stopped:
661
            return generations, None
662

663
664
        # Slice unused values from prefill
        batch.input_ids = batch.input_ids[:, :1]
665

666
        # Update attention_mask as we added a new token to input_ids
667
668
669
        batch.attention_mask[:, -batch.padding_right_offset] = 1
        # Decrease right offset
        batch.padding_right_offset -= 1
670

671
        # Update position_ids
672
673
674
675
676
677
        batch.position_ids = batch.position_ids[:, -1:] + 1

        # Update past key values
        batch.past_key_values = past

        return generations, batch