galactica.py 13.2 KB
Newer Older
1
2
3
4
import re
import torch
import torch.distributed

5
from typing import List, Optional, Type, Tuple
6
7
8

from accelerate import init_empty_weights
from safetensors import safe_open
9
10
11
12
13
14
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoConfig,
    PreTrainedTokenizerBase,
)
15
16
17
18
19
20
from transformers.models.opt.parallel_layers import (
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
    TensorParallelRowLinear,
)

21
22
23
24
from text_generation_server.models import CausalLM
from text_generation_server.pb import generate_pb2
from text_generation_server.models.causal_lm import CausalLMBatch
from text_generation_server.utils import (
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    NextTokenChooser,
    StoppingCriteria,
    initialize_torch_distributed,
    weight_files,
)

HAS_BITS_AND_BYTES = True
try:
    import bitsandbytes as bnb
    from bitsandbytes.nn import Int8Params
except Exception as e:
    HAS_BITS_AND_BYTES = False


# CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py

# we split individual characters inside special tokens like [START_DNA]
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")

# token added to implement a custom sequence tokenization. This token is added at
# corpus cleaning step and removed in pretokenization. The digits are added to increase the chance
# that they do not occur in the corpus. The digits are escaped so that the token does not appear
# literally in the source code in case we ever include it in the training data.
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"


def _insert_split_marker(m: re.Match):
    """
    Applies split marker based on a regex match of special tokens such as
    [START_DNA].
    Parameters
    ----------
    n : str
        Input text to split
    Returns
    ----------
    str - the text with the split token added
    """
    start_token, _, sequence, end_token = m.groups()
    sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
    return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"


def escape_custom_split_sequence(text):
    """
    Applies custom splitting to the text for GALILEO's tokenization
    Parameters
    ----------
    text : str
        Input text to split
    Returns
    ----------
    str - the text with the split token added
    """
    return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)


# END CREDIT


class GalacticaCausalLMBatch(CausalLMBatch):
    @classmethod
    def from_pb(
88
89
90
91
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
92
    ) -> "GalacticaCausalLMBatch":
93
94
95
96
97
98
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        input_lengths = []

        # Parse batch
99
100
        max_sequence_length = 0
        padding_right_offset = 0
101
102
103
104
        for r in pb.requests:
            # Add escape_custom_split_sequence to the CausalLMBatch logic
            inputs.append(escape_custom_split_sequence(r.inputs))
            input_lengths.append(r.input_length)
105
            next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
106
107
108
109
110
111
112
            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            stopping_criterias.append(stopping_criteria)
            max_sequence_length = max(max_sequence_length, r.input_length)
            padding_right_offset = max(
                padding_right_offset, stopping_criteria.max_new_tokens
113
114
            )

115
        # Tokenize batch
116
        tokenized_inputs = tokenizer(
117
118
119
120
            inputs,
            return_tensors="pt",
            padding=True,
            return_token_type_ids=False,
121
        ).to(device)
122
123
124
125
126
127
128
129
        input_ids = tokenized_inputs["input_ids"]
        # Allocate maximum attention_mask
        attention_mask = input_ids.new_zeros(
            (pb.size, max_sequence_length + padding_right_offset)
        )
        # Copy tokenizer attention_mask into fully allocated attention_mask
        attention_mask[:, :max_sequence_length] = tokenized_inputs["attention_mask"]

130
131
        position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
        position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
132
133
134
135
136
        all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
137
138
            input_ids=input_ids,
            attention_mask=attention_mask,
139
            position_ids=position_ids,
140
141
142
143
144
145
            past_key_values=None,
            all_input_ids=all_input_ids,
            input_lengths=input_lengths,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=pb.size,
146
147
            max_sequence_length=max_sequence_length,
            padding_right_offset=padding_right_offset,
148
149
150
151
152
153
154
155
        )


class Galactica(CausalLM):
    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return GalacticaCausalLMBatch

156
157
158
159
160
161
    def decode(self, generated_ids: List[int]) -> str:
        # Do not skip special tokens as they are used for custom parsing rules of the generated text
        return self.tokenizer.decode(
            generated_ids, skip_special_tokens=False, cleanup_tokenization_spaces=False
        )

162
163
164
165
166
167
168
169
170
171
172
173
174
175
    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
        """Overwrite forward to ignore position_ids"""

        # Model Forward
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=True,
        )
        return outputs.logits, outputs.past_key_values

176
177

class GalacticaSharded(Galactica):
178
    def __init__(
179
        self, model_id: str, revision: Optional[str] = None, quantize: bool = False
180
    ):
181
182
183
184
185
186
187
188
189
        self.process_group, self.rank, self.world_size = initialize_torch_distributed()
        self.master = self.rank == 0
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{self.rank}")
            dtype = torch.bfloat16
        else:
            device = torch.device("cpu")
            dtype = torch.float32

190
        tokenizer = AutoTokenizer.from_pretrained(
191
            model_id, revision=revision, padding_side="left"
192
        )
193

194
        config = AutoConfig.from_pretrained(
195
            model_id, revision=revision, tp_parallel=True
196
        )
197
198
199
        tokenizer.pad_token_id = config.pad_token_id

        torch.distributed.barrier(group=self.process_group)
200
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239

        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
            quantize=quantize,
            device=device,
            rank=self.rank,
            world_size=self.world_size,
        )
        self.model = model.eval().to(dtype)
        torch.distributed.barrier(group=self.process_group)
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @staticmethod
    def load_weights(
        model,
        filenames: List[str],
        quantize: bool,
        device: torch.device,
        rank: int,
        world_size: int,
    ):
        parameters = dict(model.named_parameters())
        for file in filenames:
            with safe_open(
                file, framework="pt", device=str(device) if not quantize else "cpu"
            ) as f:
                for name in f.keys():
                    if name == "lm_head.weight":
                        continue

                    module_name, param_name = name.rsplit(".", 1)
240
                    module = model.get_submodule(module_name)
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
                    current_tensor = parameters[name]

                    slice_ = f.get_slice(name)

                    if isinstance(module, TensorParallelColumnLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                        else:
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[1]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[:, start:stop]
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        tensor = slice_[:]

                    if current_tensor.shape != tensor.shape:
                        raise ValueError(
                            f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
                        )

                    tensor = tensor.contiguous()

                    if quantize:
                        if not HAS_BITS_AND_BYTES:
                            raise ImportError(
                                "bitsandbytes is not available on your machine either because it is not installed "
                                "or you don't have a GPU.\n"
                                "You can install it with `pip install bitsandbytes`."
                            )

                        if (
                            type(module)
                            in [TensorParallelRowLinear, TensorParallelColumnLinear]
                            and param_name == "weight"
                        ):
                            tensor = Int8Params(
300
                                tensor,
301
302
303
304
305
306
307
308
309
310
311
312
313
                                has_fp16_weights=False,
                                requires_grad=False,
                            ).to(device)
                            state = bnb.MatmulLtState()
                            state.threshold = 6.0
                            state.has_fp16_weights = False
                            state.memory_efficient_backward = False
                            state.use_pool = True
                            state.CB = tensor.CB
                            state.SCB = tensor.SCB
                            tensor.CB = None
                            tensor.SCB = None

314
                            def replace_linear(state):
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
                                def linear(input, weight, bias):
                                    out = bnb.matmul(
                                        input,
                                        weight,
                                        state=state,
                                        threshold=state.threshold,
                                        bias=bias,
                                    )

                                    if state.CB is not None:
                                        # we converted 8-bit row major to turing/ampere format
                                        # in the first inference pass
                                        # we no longer need the row-major weight
                                        del state.CB
                                        weight.data = state.CxB

331
                                    return out
332
333
334

                                return linear

335
                            module.linear = replace_linear(state)
336
337
338
339
340
341
342
343

                        else:
                            tensor = tensor.to(device)

                    module._parameters[param_name] = tensor
                    if name == "model.decoder.embed_tokens.weight":
                        model.lm_head._parameters["weight"] = tensor

344
345
346
    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ):
347
348
349
350
351
352
353
354
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=True,
        )

        # Logits are sharded, so we need to gather them
OlivierDehaene's avatar
OlivierDehaene committed
355
356
357
        logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
        torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
        logits = torch.cat(logits, dim=2)
358
359

        return logits, outputs.past_key_values