galactica.py 12.6 KB
Newer Older
1
2
3
4
import re
import torch
import torch.distributed

5
from typing import List, Optional, Type, Tuple
6
7
8

from accelerate import init_empty_weights
from safetensors import safe_open
9
10
11
12
13
14
from transformers import (
    AutoTokenizer,
    AutoModelForCausalLM,
    AutoConfig,
    PreTrainedTokenizerBase,
)
15
16
17
18
19
20
from transformers.models.opt.parallel_layers import (
    TensorParallelColumnLinear,
    TensorParallelEmbedding,
    TensorParallelRowLinear,
)

21
22
23
24
from text_generation_server.models import CausalLM
from text_generation_server.pb import generate_pb2
from text_generation_server.models.causal_lm import CausalLMBatch
from text_generation_server.utils import (
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
    NextTokenChooser,
    StoppingCriteria,
    initialize_torch_distributed,
    weight_files,
)

HAS_BITS_AND_BYTES = True
try:
    import bitsandbytes as bnb
    from bitsandbytes.nn import Int8Params
except Exception as e:
    HAS_BITS_AND_BYTES = False


# CREDIT: Papers with code => https://github.com/paperswithcode/galai/blob/main/galai/utils.py

# we split individual characters inside special tokens like [START_DNA]
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")

# token added to implement a custom sequence tokenization. This token is added at
# corpus cleaning step and removed in pretokenization. The digits are added to increase the chance
# that they do not occur in the corpus. The digits are escaped so that the token does not appear
# literally in the source code in case we ever include it in the training data.
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"


def _insert_split_marker(m: re.Match):
    """
    Applies split marker based on a regex match of special tokens such as
    [START_DNA].
    Parameters
    ----------
    n : str
        Input text to split
    Returns
    ----------
    str - the text with the split token added
    """
    start_token, _, sequence, end_token = m.groups()
    sequence = re.sub(r"(.)", rf"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
    return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"


def escape_custom_split_sequence(text):
    """
    Applies custom splitting to the text for GALILEO's tokenization
    Parameters
    ----------
    text : str
        Input text to split
    Returns
    ----------
    str - the text with the split token added
    """
    return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)


# END CREDIT


class GalacticaCausalLMBatch(CausalLMBatch):
    @classmethod
    def from_pb(
88
89
90
91
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        device: torch.device,
92
    ) -> "GalacticaCausalLMBatch":
93
94
95
96
97
98
99
100
101
102
        inputs = []
        next_token_choosers = []
        stopping_criterias = []
        input_lengths = []

        # Parse batch
        for r in pb.requests:
            # Add escape_custom_split_sequence to the CausalLMBatch logic
            inputs.append(escape_custom_split_sequence(r.inputs))
            input_lengths.append(r.input_length)
103
104
105
            next_token_choosers.append(
                NextTokenChooser.from_pb(r.parameters, len(tokenizer), device)
            )
106
            stopping_criterias.append(
107
                StoppingCriteria.from_pb(r.stopping_parameters, tokenizer)
108
109
            )

110
        # Tokenize batch
111
        tokenized_inputs = tokenizer(
112
113
114
115
            inputs,
            return_tensors="pt",
            padding=True,
            return_token_type_ids=False,
116
        ).to(device)
117
118
        position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
        position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
119
120
121
122
123
124
125
        all_input_ids = tokenized_inputs["input_ids"].unsqueeze(-1)

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            input_ids=tokenized_inputs["input_ids"],
            attention_mask=tokenized_inputs["attention_mask"],
126
            position_ids=position_ids,
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
            past_key_values=None,
            all_input_ids=all_input_ids,
            input_lengths=input_lengths,
            next_token_choosers=next_token_choosers,
            stopping_criterias=stopping_criterias,
            size=pb.size,
            max_sequence_length=max(input_lengths),
        )


class Galactica(CausalLM):
    @property
    def batch_type(self) -> Type[CausalLMBatch]:
        return GalacticaCausalLMBatch

142
143
144
145
146
147
    def decode(self, generated_ids: List[int]) -> str:
        # Do not skip special tokens as they are used for custom parsing rules of the generated text
        return self.tokenizer.decode(
            generated_ids, skip_special_tokens=False, cleanup_tokenization_spaces=False
        )

148
149
150
151
152
153
154
155
156
157
158
159
160
161
    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
        """Overwrite forward to ignore position_ids"""

        # Model Forward
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=True,
        )
        return outputs.logits, outputs.past_key_values

162
163

class GalacticaSharded(Galactica):
164
    def __init__(
165
        self, model_id: str, revision: Optional[str] = None, quantize: bool = False
166
    ):
167
168
169
170
171
172
173
174
175
        self.process_group, self.rank, self.world_size = initialize_torch_distributed()
        self.master = self.rank == 0
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{self.rank}")
            dtype = torch.bfloat16
        else:
            device = torch.device("cpu")
            dtype = torch.float32

176
        tokenizer = AutoTokenizer.from_pretrained(
177
            model_id, revision=revision, padding_side="left"
178
        )
179

180
        config = AutoConfig.from_pretrained(
181
            model_id, revision=revision, tp_parallel=True
182
        )
183
184
185
        tokenizer.pad_token_id = config.pad_token_id

        torch.distributed.barrier(group=self.process_group)
186
        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

        with init_empty_weights():
            model = AutoModelForCausalLM.from_config(config)

        torch.distributed.barrier(group=self.process_group)
        self.load_weights(
            model,
            filenames,
            quantize=quantize,
            device=device,
            rank=self.rank,
            world_size=self.world_size,
        )
        self.model = model.eval().to(dtype)
        torch.distributed.barrier(group=self.process_group)
        super(CausalLM, self).__init__(
            tokenizer=tokenizer,
            device=device,
        )

    @staticmethod
    def load_weights(
        model,
        filenames: List[str],
        quantize: bool,
        device: torch.device,
        rank: int,
        world_size: int,
    ):
        parameters = dict(model.named_parameters())
        for file in filenames:
            with safe_open(
                file, framework="pt", device=str(device) if not quantize else "cpu"
            ) as f:
                for name in f.keys():
                    if name == "lm_head.weight":
                        continue

                    module_name, param_name = name.rsplit(".", 1)
226
                    module = model.get_submodule(module_name)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
                    current_tensor = parameters[name]

                    slice_ = f.get_slice(name)

                    if isinstance(module, TensorParallelColumnLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                        else:
                            size = slice_.get_shape()[0]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[start:stop]
                    elif isinstance(module, TensorParallelRowLinear):
                        if param_name == "weight":
                            size = slice_.get_shape()[1]
                            block_size = size // world_size
                            start = rank * block_size
                            stop = (rank + 1) * block_size
                            tensor = slice_[:, start:stop]
                        else:
                            tensor = slice_[:]
                            # XXX: Hack for Rowlinear to add the bias only once.
                            if rank != 0:
                                tensor = torch.zeros_like(tensor)
                    elif isinstance(module, TensorParallelEmbedding):
                        size = slice_.get_shape()[0]
                        block_size = size // world_size
                        start = rank * block_size
                        stop = (rank + 1) * block_size
                        tensor = slice_[start:stop]
                    else:
                        tensor = slice_[:]

                    if current_tensor.shape != tensor.shape:
                        raise ValueError(
                            f"Name {name} -- Current {current_tensor.shape} and got {tensor.shape}"
                        )

                    tensor = tensor.contiguous()

                    if quantize:
                        if not HAS_BITS_AND_BYTES:
                            raise ImportError(
                                "bitsandbytes is not available on your machine either because it is not installed "
                                "or you don't have a GPU.\n"
                                "You can install it with `pip install bitsandbytes`."
                            )

                        if (
                            type(module)
                            in [TensorParallelRowLinear, TensorParallelColumnLinear]
                            and param_name == "weight"
                        ):
                            tensor = Int8Params(
286
                                tensor,
287
288
289
290
291
292
293
294
295
296
297
298
299
                                has_fp16_weights=False,
                                requires_grad=False,
                            ).to(device)
                            state = bnb.MatmulLtState()
                            state.threshold = 6.0
                            state.has_fp16_weights = False
                            state.memory_efficient_backward = False
                            state.use_pool = True
                            state.CB = tensor.CB
                            state.SCB = tensor.SCB
                            tensor.CB = None
                            tensor.SCB = None

300
                            def replace_linear(state):
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
                                def linear(input, weight, bias):
                                    out = bnb.matmul(
                                        input,
                                        weight,
                                        state=state,
                                        threshold=state.threshold,
                                        bias=bias,
                                    )

                                    if state.CB is not None:
                                        # we converted 8-bit row major to turing/ampere format
                                        # in the first inference pass
                                        # we no longer need the row-major weight
                                        del state.CB
                                        weight.data = state.CxB

317
                                    return out
318
319
320

                                return linear

321
                            module.linear = replace_linear(state)
322
323
324
325
326
327
328
329

                        else:
                            tensor = tensor.to(device)

                    module._parameters[param_name] = tensor
                    if name == "model.decoder.embed_tokens.weight":
                        model.lm_head._parameters["weight"] = tensor

330
331
332
    def forward(
        self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
    ):
333
334
335
336
337
338
339
340
        outputs = self.model.forward(
            input_ids=input_ids,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            use_cache=True,
        )

        # Logits are sharded, so we need to gather them
OlivierDehaene's avatar
OlivierDehaene committed
341
342
343
        logits = [torch.empty_like(outputs.logits) for _ in range(self.world_size)]
        torch.distributed.all_gather(logits, outputs.logits, group=self.process_group)
        logits = torch.cat(logits, dim=2)
344
345

        return logits, outputs.past_key_values