cuda.py 10.2 KB
Newer Older
1
2
import torch
from text_generation_server.utils.import_utils import SYSTEM
3
from text_generation_server.models.globals import (
4
    ATTENTION,
5
6
    BLOCK_SIZE,
)
7
from text_generation_server.layers.attention import Seqlen
8
from typing import Optional
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
_PARTITION_SIZE = 512

try:
    from vllm._C import cache_ops
except Exception as e:
    raise ImportError(
        f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
    )


def reshape_and_cache(
    key: torch.Tensor,
    value: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    slots: torch.Tensor,
):
29
    if ATTENTION in {"flashdecoding", "flashinfer"}:
30
31
32
33
34
35
36
        shape = key_cache.shape
        key_cache.view(-1, shape[-2], shape[-1])[slots] = key
        value_cache.view(-1, shape[-2], shape[-1])[slots] = value
    else:
        cache_ops.reshape_and_cache(
            key, value, key_cache, value_cache, slots, "auto", 1.0
        )
37
38
39
40
41
42
43
44
45


def paged_attention(
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    kv_head_mapping: torch.Tensor,
    softmax_scale: float,
    block_tables: torch.Tensor,
46
    seqlen: Seqlen,
47
    max_s: int,
48
    softcap: Optional[float] = None,
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
):
    # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
    # Copyright 2023 The vLLM team. All rights
    # reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #

    # value_cache => [num_blocks, num_heads, head_size, block_size]
68
69
    # block_size = value_cache.shape[3]
    block_size = BLOCK_SIZE
70
71
72
73
74
75
76
77
    num_seqs, num_heads, head_size = query.shape
    max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE

    # NOTE(woosuk): We use a simple heuristic to decide whether to use
    # PagedAttention V1 or V2. If the number of partitions is 1, we use
    # V1 to avoid the overhead of reduction. Also, if the number of
    # sequences or heads is large, we use V1 since there is enough work
    # to parallelize.
78
    if ATTENTION == "flashinfer":
79
80
81
82
83
84
85
86
        from text_generation_server.layers.attention.flash_infer import decode_state

        return decode_state.get().forward(
            query.contiguous(),
            paged_kv_cache=(key_cache, value_cache),
            logits_soft_cap=softcap,
            sm_scale=softmax_scale,
        )
87
    elif ATTENTION == "flashdecoding":
88
89
90
        max_q = 1
        max_k = max_s
        import flash_attn_2_cuda
91

92
93
94
95
96
        # TODO fixme when flash contains the fix.
        # Number of splits is not correctly handled
        # by the current path
        # https://github.com/Dao-AILab/flash-attention/blob/320fb59487658f033f56711efd3d61b7c7a6f8f3/csrc/flash_attn/flash_api.cpp#L577
        # This fails becuase we're using causal, therefore window_right is set to 0 and the split logic is never applied.
97
98
        if softcap is None:
            softcap = 0.0
99
        out = flash_attn_2_cuda.varlen_fwd(
100
101
102
            query,
            key_cache,
            value_cache,
103
104
105
            None,
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_k,
106
            None,  # pad_k
107
            None,
108
109
            block_tables,
            None,
110
111
112
113
114
115
116
117
            max_q,
            max_k,
            0.0,  # dropout
            softmax_scale,
            False,  # zero_tensors
            True,  # causal
            -1,  # Window_left
            -1,  # Window right
118
            softcap,
119
120
            False,  # return softmax
            None,  # generator
121
        )
122
        return out[0]
123
    else:
124
125
        if softcap is not None:
            raise RuntimeError("Paged attention doesn't support softcapping")
126
127
        input_lengths = seqlen.input_lengths
        from vllm._C import ops
128

129
130
        out = torch.empty_like(query)

131
132
        use_v1 = max_s <= 8192 and (
            max_num_partitions == 1 or num_seqs * num_heads > 512
133
        )
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
        if use_v1:
            ops.paged_attention_v1(
                out,
                query,
                key_cache,
                value_cache,
                kv_head_mapping,
                softmax_scale,
                block_tables,
                input_lengths,
                block_size,
                max_s,
                None,
                "auto",
                1.0,
            )
        else:
            # Run PagedAttention V2.
            assert _PARTITION_SIZE % block_size == 0
            tmp_output = torch.empty(
                size=(num_seqs, num_heads, max_num_partitions, head_size),
                dtype=out.dtype,
                device=out.device,
            )
            exp_sums = torch.empty(
                size=(num_seqs, num_heads, max_num_partitions),
                dtype=torch.float32,
                device=out.device,
            )
            max_logits = torch.empty_like(exp_sums)

            ops.paged_attention_v2(
                out,
                exp_sums,
                max_logits,
                tmp_output,
                query,
                key_cache,
                value_cache,
                kv_head_mapping,
                softmax_scale,
                block_tables,
                input_lengths,
                block_size,
                max_s,
                None,
                "auto",
                1.0,
            )
    return out
184
185
186


try:
187
188
189
190
    is_ampere_or_newer = major >= 8 and minor >= 0
    if not is_ampere_or_newer:
        raise ImportError("FlashAttention only supports Ampere GPUs or newer.")

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    import flash_attn_2_cuda

    V2 = True
except ImportError:
    try:
        import flash_attn_cuda

        V2 = False
    except ImportError as e:
        if major >= 8:
            architecture_suffix = f"-{SYSTEM}"
            raise ImportError(
                "Flash Attention V2 is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
            )
        elif is_sm75:
            raise ImportError(
                "Flash Attention is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                "or install flash attention with `cd server && make install install-flash-attention`"
            ) from e
        else:
            raise ImportError(
                f"GPU with CUDA capability {major} {minor} is not supported"
            ) from e


SUPPORTS_WINDOWING = V2
220

221
if ATTENTION == "flashinfer":
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246

    def attention(
        q,
        k,
        v,
        cu_seqlens,
        max_s,
        softmax_scale,
        window_size_left=-1,
        causal=True,
        softcap=0.0,
    ):
        from text_generation_server.layers.attention.flash_infer import prefill_state

        return prefill_state.get().forward(
            q,
            k,
            v,
            causal=causal,
            window_left=window_size_left,
            logits_soft_cap=softcap,
            sm_scale=softmax_scale,
        )

elif V2:
247
248
249
250
251
252
253
254
255
256

    def attention(
        q,
        k,
        v,
        cu_seqlens,
        max_s,
        softmax_scale,
        window_size_left=-1,
        causal=True,
257
        softcap=0.0,
258
    ):
259
        out = torch.empty_like(q)
260
261
262
263
264
265
266
267
268
269
270
271
        if window_size_left <= 0 and window_size_left != -1:
            raise ValueError("`window_size_left` must be > 0 or -1")
        return flash_attn_2_cuda.varlen_fwd(
            q,
            k,
            v,
            out,
            cu_seqlens,
            cu_seqlens,
            None,
            None,
            None,
272
            None,
273
274
275
276
277
278
279
280
            max_s,
            max_s,
            0.0,
            softmax_scale,
            False,
            causal,
            window_size_left,
            0,
281
            softcap,
282
283
            False,
            None,
284
        )[0]
285
286
287
288
289
290
291
292
293
294
295

else:

    def attention(
        q,
        k,
        v,
        cu_seqlens,
        max_s,
        softmax_scale,
        window_size_left=-1,
296
        softcap=None,
297
298
299
300
301
    ):
        if window_size_left != -1:
            raise NotImplementedError(
                "window_size_left is only available with flash attn v2"
            )
302
303
        if softcap is not None:
            raise NotImplementedError("softcap is only available with flash attn v2")
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

        # Flash attention v1 requires q, k and v to have the same number of heads
        if k.shape[1] != q.shape[1]:
            # MQA expand
            if k.shape[1] == 1:
                k = k.expand(-1, q.shape[1], -1)
            # Grouped attention reshape
            else:
                original_shape = k.shape
                k = (
                    k.unsqueeze(2)
                    .expand(-1, -1, q.shape[1] // k.shape[1], -1)
                    .reshape(original_shape[0], -1, original_shape[2])
                )
        if v.shape[1] != q.shape[1]:
            # MQA expand
            if v.shape[1] == 1:
                v = v.expand(-1, q.shape[1], -1)
            # Grouped attention reshape
            else:
                original_shape = v.shape
                v = (
                    v.unsqueeze(2)
                    .expand(-1, -1, q.shape[1] // v.shape[1], -1)
                    .reshape(original_shape[0], -1, original_shape[2])
                )

331
        out = torch.empty_like(q)
332
        flash_attn_cuda.fwd(
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
            q,
            k,
            v,
            out,
            cu_seqlens,
            cu_seqlens,
            max_s,
            max_s,
            0.0,
            softmax_scale,
            False,
            True,
            False,
            0,
            None,
348
349
        )
        return out