cuda.py 9.26 KB
Newer Older
1
2
import torch
from text_generation_server.utils.import_utils import SYSTEM
3
4
from text_generation_server.models.globals import FLASH_DECODING, BLOCK_SIZE
from text_generation_server.layers.attention import Seqlen
5
from typing import Optional
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
_PARTITION_SIZE = 512

try:
    from vllm._C import cache_ops
except Exception as e:
    raise ImportError(
        f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
    )


def reshape_and_cache(
    key: torch.Tensor,
    value: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    slots: torch.Tensor,
):
26
27
28
29
30
31
32
33
    if FLASH_DECODING:
        shape = key_cache.shape
        key_cache.view(-1, shape[-2], shape[-1])[slots] = key
        value_cache.view(-1, shape[-2], shape[-1])[slots] = value
    else:
        cache_ops.reshape_and_cache(
            key, value, key_cache, value_cache, slots, "auto", 1.0
        )
34
35
36
37
38
39
40
41
42


def paged_attention(
    query: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    kv_head_mapping: torch.Tensor,
    softmax_scale: float,
    block_tables: torch.Tensor,
43
    seqlen: Seqlen,
44
    max_s: int,
45
    softcap: Optional[float] = None,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
):
    # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
    # Copyright 2023 The vLLM team. All rights
    # reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #

    # value_cache => [num_blocks, num_heads, head_size, block_size]
65
66
    # block_size = value_cache.shape[3]
    block_size = BLOCK_SIZE
67
68
69
70
71
72
73
74
    num_seqs, num_heads, head_size = query.shape
    max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE

    # NOTE(woosuk): We use a simple heuristic to decide whether to use
    # PagedAttention V1 or V2. If the number of partitions is 1, we use
    # V1 to avoid the overhead of reduction. Also, if the number of
    # sequences or heads is large, we use V1 since there is enough work
    # to parallelize.
75
76
77
78
    if FLASH_DECODING:
        max_q = 1
        max_k = max_s
        import flash_attn_2_cuda
79

80
81
82
83
84
        # TODO fixme when flash contains the fix.
        # Number of splits is not correctly handled
        # by the current path
        # https://github.com/Dao-AILab/flash-attention/blob/320fb59487658f033f56711efd3d61b7c7a6f8f3/csrc/flash_attn/flash_api.cpp#L577
        # This fails becuase we're using causal, therefore window_right is set to 0 and the split logic is never applied.
85
86
        if softcap is None:
            softcap = 0.0
87
        out = flash_attn_2_cuda.varlen_fwd(
88
89
90
            query,
            key_cache,
            value_cache,
91
92
93
            None,
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_k,
94
            None,  # pad_k
95
            None,
96
97
            block_tables,
            None,
98
99
100
101
102
103
104
105
            max_q,
            max_k,
            0.0,  # dropout
            softmax_scale,
            False,  # zero_tensors
            True,  # causal
            -1,  # Window_left
            -1,  # Window right
106
            softcap,
107
108
            False,  # return softmax
            None,  # generator
109
        )
110
        return out[0]
111
    else:
112
113
        if softcap is not None:
            raise RuntimeError("Paged attention doesn't support softcapping")
114
115
        input_lengths = seqlen.input_lengths
        from vllm._C import ops
116

117
118
        out = torch.empty_like(query)

119
120
        use_v1 = max_s <= 8192 and (
            max_num_partitions == 1 or num_seqs * num_heads > 512
121
        )
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        if use_v1:
            ops.paged_attention_v1(
                out,
                query,
                key_cache,
                value_cache,
                kv_head_mapping,
                softmax_scale,
                block_tables,
                input_lengths,
                block_size,
                max_s,
                None,
                "auto",
                1.0,
            )
        else:
            # Run PagedAttention V2.
            assert _PARTITION_SIZE % block_size == 0
            tmp_output = torch.empty(
                size=(num_seqs, num_heads, max_num_partitions, head_size),
                dtype=out.dtype,
                device=out.device,
            )
            exp_sums = torch.empty(
                size=(num_seqs, num_heads, max_num_partitions),
                dtype=torch.float32,
                device=out.device,
            )
            max_logits = torch.empty_like(exp_sums)

            ops.paged_attention_v2(
                out,
                exp_sums,
                max_logits,
                tmp_output,
                query,
                key_cache,
                value_cache,
                kv_head_mapping,
                softmax_scale,
                block_tables,
                input_lengths,
                block_size,
                max_s,
                None,
                "auto",
                1.0,
            )
    return out
172
173
174


try:
175
176
177
178
    is_ampere_or_newer = major >= 8 and minor >= 0
    if not is_ampere_or_newer:
        raise ImportError("FlashAttention only supports Ampere GPUs or newer.")

179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    import flash_attn_2_cuda

    V2 = True
except ImportError:
    try:
        import flash_attn_cuda

        V2 = False
    except ImportError as e:
        if major >= 8:
            architecture_suffix = f"-{SYSTEM}"
            raise ImportError(
                "Flash Attention V2 is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
            )
        elif is_sm75:
            raise ImportError(
                "Flash Attention is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                "or install flash attention with `cd server && make install install-flash-attention`"
            ) from e
        else:
            raise ImportError(
                f"GPU with CUDA capability {major} {minor} is not supported"
            ) from e


SUPPORTS_WINDOWING = V2
208

209
210
211
212
213
214
215
216
217
218
219
if V2:

    def attention(
        q,
        k,
        v,
        cu_seqlens,
        max_s,
        softmax_scale,
        window_size_left=-1,
        causal=True,
220
        softcap=0.0,
221
    ):
222
        out = torch.empty_like(q)
223
224
225
226
227
228
229
230
231
232
233
234
        if window_size_left <= 0 and window_size_left != -1:
            raise ValueError("`window_size_left` must be > 0 or -1")
        return flash_attn_2_cuda.varlen_fwd(
            q,
            k,
            v,
            out,
            cu_seqlens,
            cu_seqlens,
            None,
            None,
            None,
235
            None,
236
237
238
239
240
241
242
243
            max_s,
            max_s,
            0.0,
            softmax_scale,
            False,
            causal,
            window_size_left,
            0,
244
            softcap,
245
246
            False,
            None,
247
        )[0]
248
249
250
251
252
253
254
255
256
257
258

else:

    def attention(
        q,
        k,
        v,
        cu_seqlens,
        max_s,
        softmax_scale,
        window_size_left=-1,
259
        softcap=None,
260
261
262
263
264
    ):
        if window_size_left != -1:
            raise NotImplementedError(
                "window_size_left is only available with flash attn v2"
            )
265
266
        if softcap is not None:
            raise NotImplementedError("softcap is only available with flash attn v2")
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293

        # Flash attention v1 requires q, k and v to have the same number of heads
        if k.shape[1] != q.shape[1]:
            # MQA expand
            if k.shape[1] == 1:
                k = k.expand(-1, q.shape[1], -1)
            # Grouped attention reshape
            else:
                original_shape = k.shape
                k = (
                    k.unsqueeze(2)
                    .expand(-1, -1, q.shape[1] // k.shape[1], -1)
                    .reshape(original_shape[0], -1, original_shape[2])
                )
        if v.shape[1] != q.shape[1]:
            # MQA expand
            if v.shape[1] == 1:
                v = v.expand(-1, q.shape[1], -1)
            # Grouped attention reshape
            else:
                original_shape = v.shape
                v = (
                    v.unsqueeze(2)
                    .expand(-1, -1, q.shape[1] // v.shape[1], -1)
                    .reshape(original_shape[0], -1, original_shape[2])
                )

294
295
        out = torch.empty_like(q)

296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
        return flash_attn_cuda.fwd(
            q,
            k,
            v,
            out,
            cu_seqlens,
            cu_seqlens,
            max_s,
            max_s,
            0.0,
            softmax_scale,
            False,
            True,
            False,
            0,
            None,
312
        )[0]