__init__.py 8.55 KB
Newer Older
1
2
import torch

3
from loguru import logger
4
from transformers import AutoConfig
5
from transformers.models.auto import modeling_auto
6
7
from typing import Optional

8
9
from text_generation_server.models.model import Model
from text_generation_server.models.causal_lm import CausalLM
10
from text_generation_server.models.flash_causal_lm import FlashCausalLM
11
12
from text_generation_server.models.bloom import BLOOM, BLOOMSharded
from text_generation_server.models.seq2seq_lm import Seq2SeqLM
13
from text_generation_server.models.opt import OPT, OPTSharded
14
15
from text_generation_server.models.galactica import Galactica, GalacticaSharded
from text_generation_server.models.santacoder import SantaCoder
16
from text_generation_server.models.gpt_neox import GPTNeoxSharded
17
from text_generation_server.models.t5 import T5Sharded
18

19
try:
20
21
22
23
24
25
26
27
    if torch.cuda.is_available():
        major, minor = torch.cuda.get_device_capability()
        is_sm75 = major == 7 and minor == 5
        is_sm8x = major == 8 and minor >= 0
        is_sm90 = major == 9 and minor == 0

        supported = is_sm75 or is_sm8x or is_sm90
        if not supported:
28
29
30
31
32
33
34
35
36
37
38
39
40
41
            raise ImportError(
                f"GPU with CUDA capability {major} {minor} is not supported"
            )

        from text_generation_server.models.flash_neox import FlashNeoX, FlashNeoXSharded
        from text_generation_server.models.flash_llama import (
            FlashLlama,
            FlashLlamaSharded,
        )
        from text_generation_server.models.flash_santacoder import (
            FlashSantacoder,
            FlashSantacoderSharded,
        )

42
43
44
        FLASH_ATTENTION = True
    else:
        FLASH_ATTENTION = False
45
except ImportError:
46
47
48
    logger.opt(exception=True).warning(
        "Could not import Flash Attention enabled models"
    )
49
    FLASH_ATTENTION = False
50

51
52
53
54
55
__all__ = [
    "Model",
    "BLOOM",
    "BLOOMSharded",
    "CausalLM",
56
    "FlashCausalLM",
57
58
59
    "Galactica",
    "GalacticaSharded",
    "GPTNeoxSharded",
60
61
    "Seq2SeqLM",
    "SantaCoder",
62
63
    "OPT",
    "OPTSharded",
64
    "T5Sharded",
65
66
67
    "get_model",
]

68
if FLASH_ATTENTION:
69
70
    __all__.append(FlashNeoX)
    __all__.append(FlashNeoXSharded)
71
    __all__.append(FlashSantacoder)
72
    __all__.append(FlashSantacoderSharded)
73
74
75
    __all__.append(FlashLlama)
    __all__.append(FlashLlamaSharded)

76
77
78
79
80
FLASH_ATT_ERROR_MESSAGE = (
    "{} requires Flash Attention CUDA kernels to be installed.\n"
    "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
    "or install flash attention with `cd server && make install install-flash-attention`"
)
81

82
83
84
# The flag below controls whether to allow TF32 on matmul. This flag defaults to False
# in PyTorch 1.12 and later.
torch.backends.cuda.matmul.allow_tf32 = True
85

86
87
# The flag below controls whether to allow TF32 on cuDNN. This flag defaults to True.
torch.backends.cudnn.allow_tf32 = True
88

89
90
91
# Disable gradients
torch.set_grad_enabled(False)

92

93
def get_model(
94
95
96
97
98
    model_id: str,
    revision: Optional[str],
    sharded: bool,
    quantize: Optional[str],
    trust_remote_code: bool,
99
) -> Model:
100
    if "facebook/galactica" in model_id:
101
        if sharded:
102
103
104
105
106
107
            return GalacticaSharded(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
108
        else:
109
110
111
112
113
114
            return Galactica(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
115

116
    if model_id.startswith("bigcode/"):
117
        if sharded:
118
119
120
121
            if not FLASH_ATTENTION:
                raise NotImplementedError(
                    FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Santacoder")
                )
122
123
124
125
126
127
            return FlashSantacoderSharded(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
128
129
        else:
            santacoder_cls = FlashSantacoder if FLASH_ATTENTION else SantaCoder
130
131
132
133
134
135
            return santacoder_cls(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
136

137
138
139
    config = AutoConfig.from_pretrained(
        model_id, revision=revision, trust_remote_code=trust_remote_code
    )
140
    model_type = config.model_type
141

142
143
144
145
146
147
    if model_type == "gpt_bigcode":
        if sharded:
            if not FLASH_ATTENTION:
                raise NotImplementedError(
                    FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Santacoder")
                )
148
149
150
151
152
153
            return FlashSantacoderSharded(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
154
155
        else:
            santacoder_cls = FlashSantacoder if FLASH_ATTENTION else SantaCoder
156
157
158
159
160
161
            return santacoder_cls(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
162

163
    if model_type == "bloom":
164
        if sharded:
165
166
167
168
169
170
            return BLOOMSharded(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
171
        else:
172
173
174
175
176
177
            return BLOOM(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
178

179
    if model_type == "gpt_neox":
180
        if sharded:
181
            neox_cls = FlashNeoXSharded if FLASH_ATTENTION else GPTNeoxSharded
182
183
184
185
186
187
            return neox_cls(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
188
        else:
189
            neox_cls = FlashNeoX if FLASH_ATTENTION else CausalLM
190
191
192
193
194
195
            return neox_cls(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
196

197
198
199
    if model_type == "llama":
        if sharded:
            if FLASH_ATTENTION:
200
201
202
203
204
205
                return FlashLlamaSharded(
                    model_id,
                    revision,
                    quantize=quantize,
                    trust_remote_code=trust_remote_code,
                )
206
            raise NotImplementedError(FLASH_ATT_ERROR_MESSAGE.format(f"Sharded Llama"))
207
208
        else:
            llama_cls = FlashLlama if FLASH_ATTENTION else CausalLM
209
210
211
212
213
214
            return llama_cls(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
215

216
217
    if config.model_type == "opt":
        if sharded:
218
219
220
221
222
223
            return OPTSharded(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
224
        else:
225
226
227
228
229
230
            return OPT(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
231

232
    if model_type == "t5":
233
        if sharded:
234
235
236
237
238
239
            return T5Sharded(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
240
        else:
241
242
243
244
245
246
            return Seq2SeqLM(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
247
248
249

    if sharded:
        raise ValueError("sharded is not supported for AutoModel")
250
251

    if model_type in modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES:
252
253
254
        return CausalLM(
            model_id, revision, quantize=quantize, trust_remote_code=trust_remote_code
        )
255
    if model_type in modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES:
256
257
258
259
260
261
262
263
264
265
266
267
268
        return Seq2SeqLM(
            model_id, revision, quantize=quantize, trust_remote_code=trust_remote_code
        )

    auto_map = getattr(config, "auto_map", None)
    if trust_remote_code and auto_map is not None:
        if "AutoModelForCausalLM" in auto_map.keys():
            return CausalLM(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
269
        if "AutoModelForSeq2SeqLM" in auto_map.keys():
270
271
272
273
274
275
            return Seq2SeqLM(
                model_id,
                revision,
                quantize=quantize,
                trust_remote_code=trust_remote_code,
            )
276
277

    raise ValueError(f"Unsupported model type {model_type}")