rocm.py 9.28 KB
Newer Older
1
import os
2
from typing import Optional
3
import torch
4
from text_generation_server.layers.attention.kv_cache import KVCache
5
from text_generation_server.utils.import_utils import SYSTEM
6
from text_generation_server.models.globals import ATTENTION
Nicolas Patry's avatar
Nicolas Patry committed
7
from text_generation_server.layers.attention import Seqlen
8
from text_generation_server.utils.log import log_master
9
10
11
12
from loguru import logger

major, minor = torch.cuda.get_device_capability()
is_sm75 = major == 7 and minor == 5
13
14
15

_PARTITION_SIZE_V1V2 = 512
_PARTITION_SIZE_CUSTOM = 256
16
17
18
19

use_triton = os.getenv("ROCM_USE_FLASH_ATTN_V2_TRITON", "").lower() in {"true", "1"}
ENGINE = "triton" if use_triton else "ck"

20
21
22
23
24
25
26
27
28
29
30
use_rocm_custom_paged_attn = os.getenv("ROCM_USE_CUSTOM_PAGED_ATTN", "1") != "0"
try:
    if use_rocm_custom_paged_attn:
        from vllm._custom_C import paged_attention_custom
except ImportError as e:
    log_master(
        logger.info,
        f"Custom Paged Attention not available. Complete error: {e}",
    )
    use_rocm_custom_paged_attn = False

31
try:
32
    import vllm._custom_ops as ops
33
34
35
36
37
38
39
40
41
42
43
44
45
except Exception as e:
    raise ImportError(
        f"Could not import vllm paged attention. Make sure your installation is correct. Complete error: {e}"
    )


def reshape_and_cache(
    key: torch.Tensor,
    value: torch.Tensor,
    key_cache: torch.Tensor,
    value_cache: torch.Tensor,
    slots: torch.Tensor,
):
46
    if ATTENTION == "flashdecoding":
47
48
49
50
        shape = key_cache.shape
        key_cache.view(-1, shape[-2], shape[-1])[slots] = key
        value_cache.view(-1, shape[-2], shape[-1])[slots] = value
    else:
51
        ops.reshape_and_cache(key, value, key_cache, value_cache, slots, "auto", 1.0)
52
53
54
55


def paged_attention(
    query: torch.Tensor,
56
    kv_cache: KVCache,
57
58
59
    kv_head_mapping: torch.Tensor,
    softmax_scale: float,
    block_tables: torch.Tensor,
60
    seqlen: Seqlen,
61
    max_s: int,
62
    softcap: Optional[float] = None,
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
):
    # Adapted from: https://github.com/vllm-project/vllm/blob/f8a1e39fae05ca610be8d5a78be9d40f5274e5fc/vllm/model_executor/layers/attention.py
    # Copyright 2023 The vLLM team. All rights
    # reserved.
    #
    # Licensed under the Apache License, Version 2.0 (the "License");
    # you may not use this file except in compliance with the License.
    # You may obtain a copy of the License at
    #
    #     http://www.apache.org/licenses/LICENSE-2.0
    #
    # Unless required by applicable law or agreed to in writing, software
    # distributed under the License is distributed on an "AS IS" BASIS,
    # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    # See the License for the specific language governing permissions and
    # limitations under the License.
    #

81
82
83
    if softcap is not None:
        raise RuntimeError("Paged attention doesn't support softcapping")

84
    # value_cache => [num_blocks, num_heads, head_size, block_size]
85
    block_size = kv_cache.value.shape[3]
86
    num_seqs, num_heads, head_size = query.shape
87

88
    num_kv_heads = kv_cache.key.shape[1]
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
    gqa_ratio = num_heads // num_kv_heads
    use_custom = (
        use_rocm_custom_paged_attn
        and (query.dtype == torch.half or query.dtype == torch.bfloat16)
        and (head_size == 128 or head_size == 64)
        and (block_size == 16 or block_size == 32)
        and (gqa_ratio >= 1 and gqa_ratio <= 16)
        and max_s <= 32768
    )

    if not use_custom:
        _PARTITION_SIZE = _PARTITION_SIZE_V1V2
    else:
        _PARTITION_SIZE = _PARTITION_SIZE_CUSTOM

104
    max_num_partitions = (max_s + _PARTITION_SIZE - 1) // _PARTITION_SIZE
105
    input_lengths = seqlen.input_lengths + seqlen.cache_lengths
106

107
108
    out = torch.empty_like(query)

109
110
111
112
113
    # NOTE(woosuk): We use a simple heuristic to decide whether to use
    # PagedAttention V1 or V2. If the number of partitions is 1, we use
    # V1 to avoid the overhead of reduction. Also, if the number of
    # sequences or heads is large, we use V1 since there is enough work
    # to parallelize.
114
    import vllm._custom_ops as ops
115

116
117
118
119
120
    use_v1 = (
        max_s <= 8192
        and (max_num_partitions == 1 or num_seqs * num_heads > 512)
        and not use_custom
    )
121
122
123
124
    if use_v1:
        ops.paged_attention_v1(
            out,
            query,
125
126
            kv_cache.key,
            kv_cache.value,
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
            kv_head_mapping,
            softmax_scale,
            block_tables,
            input_lengths,
            block_size,
            max_s,
            None,
            "auto",
            1.0,
        )
    else:
        # Run PagedAttention V2.
        assert _PARTITION_SIZE % block_size == 0
        tmp_output = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions, head_size),
            dtype=out.dtype,
            device=out.device,
        )
        exp_sums = torch.empty(
            size=(num_seqs, num_heads, max_num_partitions),
            dtype=torch.float32,
            device=out.device,
        )
        max_logits = torch.empty_like(exp_sums)

152
153
154
155
156
157
158
        if not use_custom:
            ops.paged_attention_v2(
                out,
                exp_sums,
                max_logits,
                tmp_output,
                query,
159
160
                kv_cache.key,
                kv_cache.value,
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
                kv_head_mapping,
                softmax_scale,
                block_tables,
                input_lengths,
                block_size,
                max_s,
                None,
                "auto",
                1.0,
            )
        else:
            paged_attention_custom(
                out,
                exp_sums,
                max_logits,
                tmp_output,
                query,
178
179
                kv_cache.key,
                kv_cache.value,
180
181
182
183
184
185
186
187
188
189
                num_kv_heads,
                softmax_scale,
                block_tables,
                input_lengths,
                block_size,
                max_s,
                None,
                "auto",
            )

190
    return out
191
192
193
194
195
196


if ENGINE != "triton":
    try:
        import flash_attn_2_cuda

197
198
199
200
        log_master(
            logger.info,
            "ROCm: using Flash Attention 2 Composable Kernel implementation.",
        )
Nicolas Patry's avatar
Nicolas Patry committed
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
    except ImportError as e:
        if major >= 8:
            architecture_suffix = f"-{SYSTEM}"
            raise ImportError(
                "Flash Attention V2 is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                f"or install flash attention v2 with `cd server && make install install-flash-attention-v2{architecture_suffix}`"
            )
        elif is_sm75:
            raise ImportError(
                "Flash Attention is not installed.\n"
                "Use the official Docker image (ghcr.io/huggingface/text-generation-inference:latest) "
                "or install flash attention with `cd server && make install install-flash-attention`"
            ) from e
        else:
            for idx in range(torch.cuda.device_count()):
                name = torch.cuda.get_device_name(idx)
                if "MI210" not in name and "MI250" not in name:
                    raise ImportError(
                        f"AMD GPU {torch.cuda.get_device_name(idx)} does not support flash-attention"
                    )
            raise ImportError(
                f"AMD GPU with ROCm capability {major} {minor} is not supported"
            ) from e


SUPPORTS_WINDOWING = False
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243


def attention(
    *,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    kv_cache: KVCache,
    seqlen: Seqlen,
    block_tables: torch.Tensor,
    softmax_scale: float,
    window_size_left: int = -1,
    causal: bool = True,
    softcap: Optional[float] = None,
):
    if ENGINE == "ck":
244
245
        if window_size_left <= 0 and window_size_left != -1:
            raise ValueError("`window_size_left` must be > 0 or -1")
246

247
248
249
250
        out = torch.empty_like(query)

        if softcap is None:
            softcap = 0.0
251

252
        # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
253
        return flash_attn_2_cuda.varlen_fwd(
254
255
256
            query,
            key,
            value,
257
            out,
258
259
260
261
262
263
264
265
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_q,
            None,
            None,
            None,
            None,
            seqlen.max_q,
            seqlen.max_k,
266
267
268
269
            0.0,
            softmax_scale,
            False,
            causal,
270
271
272
            window_size_left,
            0,
            softcap,
273
274
            False,
            None,
275
        )[0]
276

277
278
279
    elif ENGINE == "triton":
        from .flash_attn_triton import triton_attention

280
281
282
        if softcap is not None:
            raise NotImplementedError("softcap is only available with CK flash attn")

283
        out = torch.empty_like(query)
284

285
        # We do not need to check window_size_left (not supported) here, so it is already checked ahead of time at model load.
286
        output, _ = triton_attention(
287
288
289
            query,
            key,
            value,
290
            out,
291
292
293
294
            seqlen.cu_seqlen_q,
            seqlen.cu_seqlen_q,
            seqlen.max_q,
            seqlen.max_k,
295
296
297
298
299
            causal,
            softmax_scale,
        )
        return output

300
301
302
    else:
        raise RuntimeError(f"Unknown attention engine {ENGINE}")

303
304
305
306
307
308
309

__all__ = [
    "SUPPORTS_WINDOWING",
    "attention",
    "paged_attention",
    "reshape_and_cache",
]