- 17 Oct, 2024 1 commit
-
-
Daniël de Kok authored
* Simplify the `attention` function - Use one definition rather than multiple. - Add `key`/`value` arguments, so that we don't need the `PREFILL_IN_KVCACHE` constant. - Make it kwargs-only (to avoid mixing up the various `Tensor` args). * Fixup flashinfer support
-
- 16 Oct, 2024 1 commit
-
-
OlivierDehaene authored
* wip * rollback * refactor to use prefix/postfix namming + fix all_input_ids_tensor * maybe patching vlms? * fix filter and concat * wip, no filter, no concat * current * add prepare_for_prefill * working * load tested * re-create slots * re-create slots * fix slot_filtering_indices * feedback loop * remove log * fix benchmarker * fix vlm and seq2seq * rename to cache and input lengths * fix prefill logprobs * fix launcher * fix logprobs? * idk at this point * max input length * omfg * remove debugging lines * fix tests * fix mllama * fix cargo tests * remove support chunking for paged * Fixing non blocked attentions * Fixing dtype + AMD, Ipex targets. * lint fix. * rename * Fix prefix_caching variable, remove defaults in server (confusing a lot of the times). * Add simple resolution when user specifies ATTENTION=paged. * Put back non default simple tests. * Fix env name --------- Co-authored-by:Nicolas Patry <patry.nicolas@protonmail.com>
-
- 04 Oct, 2024 1 commit
-
-
Daniël de Kok authored
* Add basic FP8 KV cache support This change adds rudimentary FP8 KV cache support. The support is enabled by passing `--kv-cache-dtype fp8_e5m2` to the launcher. Doing so uses this type for the KV cache. However support is still limited: * Only the `fp8_e5m2` type is supported. * The KV cache layout is the same as `float16`/`bfloat16` (HND). * The FP8 KV cache is only supported for FlashInfer. * Loading of scales is not yet supported. * Fix Cargo.toml
-
- 30 Sep, 2024 1 commit
-
-
Mohit Sharma authored
* style * update torch * ix issues * fix clone * revert mkl * added custom PA * style * fix style * style * hide env vart * fix mixtral model * add skinny kernel and merge fixes * fixed style * fix issue for sliding window models * addressed review comments * fix import * improved error messag * updated default value * remove import * fix imports after rebase * float16 dep * improve dockerfile * cleaned dockerfile
-
- 27 Sep, 2024 1 commit
-
-
Daniël de Kok authored
* Improve support for GPUs with capability < 8 - For models that cannot use flashinfer, use flash-attn v1 + paged attention for models with a compute capability older than 8. - Disable prefix caching when using paged attention. - When using flash-attn v1, pass the key/value, rather than the cache, since v1 cannot use block tables. * nix: add flash-attn-v1 to the server environment * Move disabling prefix caching into the block of exceptions * Capability as `usize`s
-
- 09 Aug, 2024 1 commit
-
-
Nicolas Patry authored
* Using an enum for flash backens (paged/flashdecoding/flashinfer) * Early exit on server too. * Clippy. * Fix clippy and fmt.
-
- 01 Aug, 2024 1 commit
-
-
Daniël de Kok authored
- Always return the hidden states. - Create the output tensor inside the `attention` and `paged_attention` functions. This removes the difference between how the output is handled between attention (output parameter) and paged attention (return value). This also removes the assumption that the attention implementation can write to an output tensor (in preparation of FlashInfer).
-
- 26 Jul, 2024 1 commit
-
-
drbh authored
* feat: add ruff and resolve issue * fix: update client exports and adjust after rebase * fix: adjust syntax to avoid circular import * fix: adjust client ruff settings * fix: lint and refactor import check and avoid model enum as global names * fix: improve fbgemm_gpu check and lints * fix: update lints * fix: prefer comparing model enum over str * fix: adjust lints and ignore specific rules * fix: avoid unneeded quantize check
-
- 20 Jul, 2024 1 commit
-
-
OlivierDehaene authored
* feat(fp8): add support for fbgemm * allow loading fp8 weights directly * update outlines * fix makefile * build fbgemm * avoid circular import and fix dockerfile * add default dtype * refactored weights loader * fix auto conversion * fix quantization config parsing * force new nccl on install * missing get_weights implementation * increase timeout
-
- 02 Jul, 2024 1 commit
-
-
Nicolas Patry authored
-
- 01 Jul, 2024 1 commit
-
-
Nicolas Patry authored
* Using flash decoding Conditional flashdecoding. Fix max_q. Working kvcache Working version with flash decoding. Make it work for mistral. Fix after rebase.. Less intrusive. REvert changes in modeling. Speedup flashdecoding. HHachweew Hack to make other models work. Fixing non flash decoding llama path. Router logic knows about page size. Missing 2 models. Missing cohere. Fixing cohere flash decoding. Revamped all this architecture. Fix cohere. Fixing falcon. Enabling custom block size schedule. Update router/src/infer.rs Not sending preallocated output. * Making it work on non flash decoding. * Fix Cohere. * Fix non decoding paths. * Rebased. * No need for cache_manager anymore. * Update? * "ipex" -> "cpu" * These do not belong. * Factoring cu_seqlen_qk for better abstracting over every model. * Fixing non flash tests/imports. * Changing return everywhere. * Update mistral past. * Fixing Mi{s,x}tral (non functional in Flash Decoding mode though). * Fixup mistral clamping (had issues with cuda graphs). * No need to recreate anything actually.
-
- 10 Jun, 2024 1 commit
-
-
fxmarty authored
* update vllm commit & fix models using sliding window * update * update commit * fix bug where tunableop is bound to cuda graph even when cuda graph are disabled * enable tunableop by default * fix sliding window * address review * dead code * precise comment * is it flaky?
-
- 05 Jun, 2024 1 commit
-
-
Nicolas Patry authored
# What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
-
- 31 May, 2024 1 commit
-
-
Nicolas Patry authored
Purely refactors paged/attention into `layers/attention` and make hardware differences more obvious with 1 file per hardware. (#1986) # What does this PR do? <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
-