flash_mistral.py 21.5 KB
Newer Older
1
2
3
4
5
6
7
8
import math
import torch
import torch.distributed

import numpy as np

from dataclasses import dataclass
from opentelemetry import trace
9
from transformers import PreTrainedTokenizerBase, AutoTokenizer, AutoConfig
OlivierDehaene's avatar
OlivierDehaene committed
10
from typing import Optional, Tuple, Type
11
12
13
14
15
16
17
18
19
20
21

from text_generation_server.pb import generate_pb2
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.flash_causal_lm import FlashCausalLMBatch, BLOCK_SIZE
from text_generation_server.models.cache_manager import (
    get_cache_manager,
)
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
    FlashMistralForCausalLM,
    MistralConfig,
)
Nicolas Patry's avatar
Nicolas Patry committed
22
from text_generation_server.utils.speculate import get_speculate
23
24
25
26
27
28
29
30
31
32
33
34
35
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
    HeterogeneousNextTokenChooser,
    StoppingCriteria,
)

tracer = trace.get_tracer(__name__)

# Will be set in init
SLIDING_WINDOW: Optional[int] = None
SLIDING_WINDOW_BLOCKS: Optional[int] = None
36
from text_generation_server.utils.import_utils import IS_XPU_SYSTEM
37

38
MEM_POOL = torch.cuda.graph_pool_handle() if torch.cuda.is_available() else None
39

40

OlivierDehaene's avatar
OlivierDehaene committed
41
42
43
44
45
46
47
48
49
50
51
52
53
def set_sliding_window(sliding_window: int, sliding_window_blocks: int):
    global SLIDING_WINDOW
    global SLIDING_WINDOW_BLOCKS
    SLIDING_WINDOW = sliding_window
    SLIDING_WINDOW_BLOCKS = sliding_window_blocks


def get_sliding_windows() -> Tuple[int, int]:
    global SLIDING_WINDOW
    global SLIDING_WINDOW_BLOCKS
    return SLIDING_WINDOW, SLIDING_WINDOW_BLOCKS


54
55
56
57
58
59
60
61
62
# Adds windowing logic to FlashCausalLMBatch
@dataclass
class FlashMistralBatch(FlashCausalLMBatch):
    # Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers
    # as we only keep SLIDING_WINDOW values instead of the whole tensor
    prefill_cache_indices: Optional[torch.Tensor] = None

    @classmethod
    def from_pb(
OlivierDehaene's avatar
OlivierDehaene committed
63
64
65
66
67
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        dtype: torch.dtype,
        device: torch.device,
68
    ) -> "FlashCausalLMBatch":
69
70
        batch_tokenized_inputs = cls.batch_tokenized_inputs(pb.requests, tokenizer)
        return cls.from_tokenized(pb, tokenizer, batch_tokenized_inputs, dtype, device)
71

72
73
74
75
76
77
78
79
80
81
    @classmethod
    def from_tokenized(
        cls,
        pb: generate_pb2.Batch,
        tokenizer: PreTrainedTokenizerBase,
        batch_tokenized_inputs,
        dtype: torch.dtype,
        device: torch.device,
    ) -> "FlashCausalLMBatch":
        sliding_window, sliding_window_blocks = get_sliding_windows()
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

        position_ids = []
        cu_seqlen_prefill = [0]
        needed_blocks_slots = []
        start_slots = []
        slot_indices = []
        prefill_cache_indices = []

        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        requests_idx_mapping = {}

        all_prefill_logprobs = True
        no_prefill_logprobs = True
        prefill_head_indices = []
        prefill_next_token_indices = []
        prefill_cu_outlens = [0]

        next_token_chooser_parameters = []
        stopping_criterias = []
        top_n_tokens = []

        # Cumulative length
        cumulative_length = 0
        cumulative_max_length = 0
        prefill_out_cumulative_length = 0

        blocks = 0
        max_seqlen = 0
        max_length = 0
        max_blocks = 0

        # Parse batch
        for i, (r, tokenized_input) in enumerate(
OlivierDehaene's avatar
OlivierDehaene committed
118
            zip(pb.requests, batch_tokenized_inputs)
119
120
121
122
        ):
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

OlivierDehaene's avatar
OlivierDehaene committed
123
            tokenized_input = tokenized_input[-r.truncate :]
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

            input_length = len(tokenized_input)
            input_lengths.append(input_length)

            prefix_offsets.append(input_length - 5)
            read_offsets.append(input_length)

            all_input_ids.append(tokenized_input)

            # Position ids
            request_position_ids = torch.arange(0, input_length, dtype=torch.int32)
            position_ids.append(request_position_ids)

            # Add cumulative lengths of all previous inputs
            cu_seqlen_prefill.append(cumulative_length + input_length)

            next_token_chooser_parameters.append(r.parameters)

            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            max_new_tokens = stopping_criteria.max_new_tokens
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(r.top_n_tokens)

            # Paged attention
            # Remove one as the first token des not have a past
Nicolas Patry's avatar
Nicolas Patry committed
151
152
            speculative_length = get_speculate()
            total_tokens = input_length + max_new_tokens - 1 + speculative_length
153
154

            # Needed blocks can not go over SLIDING_WINDOW_BLOCKS
155
            needed_blocks = math.ceil(total_tokens / BLOCK_SIZE)
OlivierDehaene's avatar
OlivierDehaene committed
156
157
            if sliding_window_blocks is not None:
                needed_blocks = min(needed_blocks, sliding_window_blocks)
158
159
160
161
162
163
164
165
166
167
168
169
170
            blocks += needed_blocks

            needed_blocks_slots.append((needed_blocks, total_tokens))
            start_slots.append(cumulative_max_length)

            request_slot_indices = torch.arange(
                cumulative_max_length,
                cumulative_max_length + input_length,
                dtype=torch.int64,
            )
            slot_indices.append(request_slot_indices)

            # Create tensor to slice into the kv tensor in prefill
OlivierDehaene's avatar
OlivierDehaene committed
171
            if sliding_window is not None:
172
                request_prefill_cache_indices = torch.arange(
OlivierDehaene's avatar
OlivierDehaene committed
173
                    cumulative_length + max(0, input_length - sliding_window),
174
175
176
177
                    cumulative_length + input_length,
                    dtype=torch.int64,
                )
                prefill_cache_indices.append(request_prefill_cache_indices)
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

            all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
            no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs

            if r.prefill_logprobs:
                prefill_head_indices.append(request_position_ids + cumulative_length)
                prefill_next_token_indices.append(
                    prefill_out_cumulative_length + input_length - 1
                )
                prefill_cu_outlens.append(prefill_out_cumulative_length + input_length)
                prefill_out_cumulative_length += input_length
            else:
                prefill_head_indices.append(
                    torch.tensor(
                        [cumulative_length + input_length - 1], dtype=torch.int32
                    )
                )
                prefill_next_token_indices.append(prefill_out_cumulative_length)
                prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
                prefill_out_cumulative_length += 1

            # Update
            cumulative_length += input_length
            cumulative_max_length += total_tokens
            max_seqlen = max(max_seqlen, input_length)
            max_blocks = max(max_blocks, needed_blocks)
OlivierDehaene's avatar
OlivierDehaene committed
204
205
206
            max_length = max(
                max_length, input_length + max_new_tokens + speculative_length
            )
207
208

        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
drbh's avatar
drbh committed
209
            next_token_chooser_parameters, dtype, device, tokenizer
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
        )
        start_slots = torch.tensor(start_slots, dtype=torch.int64)

        # Padded all_input_ids_tensor
        all_input_ids_tensor = np.zeros(
            (len(all_input_ids), max_length), dtype=np.int64
        )
        for i, input_ids in enumerate(all_input_ids):
            all_input_ids_tensor[i, : len(input_ids)] = input_ids

        # Create tensors on device
        all_input_ids_tensor = torch.tensor(
            all_input_ids_tensor, dtype=torch.int64, device=device
        )

        if len(pb.requests) > 1:
            input_ids = np.concatenate(all_input_ids, dtype=np.int64)
            position_ids = torch.cat(position_ids)
            slot_indices = torch.cat(slot_indices)
OlivierDehaene's avatar
OlivierDehaene committed
229
            if sliding_window is not None:
230
                prefill_cache_indices = torch.cat(prefill_cache_indices)
231
232
233
234
        else:
            input_ids = all_input_ids[0]
            position_ids = position_ids[0]
            slot_indices = slot_indices[0]
OlivierDehaene's avatar
OlivierDehaene committed
235
            if sliding_window is not None:
236
                prefill_cache_indices = prefill_cache_indices[0]
237
238
239
240
241
242
243

        cu_seqlen_prefill = torch.tensor(
            cu_seqlen_prefill, device=device, dtype=torch.int32
        )

        position_ids = position_ids.to(device)
        slot_indices = slot_indices.to(device)
244
        prefill_cache_indices = (
OlivierDehaene's avatar
OlivierDehaene committed
245
            prefill_cache_indices.to(device) if sliding_window is not None else None
246
        )
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
        input_lengths_tensor = torch.tensor(
            input_lengths, dtype=torch.int32, device=device
        )

        if all_prefill_logprobs:
            prefill_head_indices = None
            prefill_next_token_indices = cu_seqlen_prefill[1:] - 1
        elif no_prefill_logprobs:
            prefill_head_indices = cu_seqlen_prefill[1:] - 1
            prefill_next_token_indices = None
        else:
            prefill_head_indices = torch.tensor(
                torch.cat(prefill_head_indices), dtype=torch.int64, device=device
            )
            prefill_next_token_indices = torch.tensor(
                prefill_next_token_indices, dtype=torch.int64, device=device
            )
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=cu_seqlen_prefill,
            start_slots=start_slots,
            slot_indices=slot_indices,
            needed_blocks_slots=needed_blocks_slots,
            block_tables=None,
            block_tables_tensor=None,
            slots=None,
            max_seqlen=max_seqlen,
            prefill_head_indices=prefill_head_indices,
            prefill_next_token_indices=prefill_next_token_indices,
            prefill_cu_outlens=prefill_cu_outlens,
            input_lengths=input_lengths,
            input_lengths_tensor=input_lengths_tensor,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_chooser=next_token_chooser,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            blocks=blocks,
            max_blocks=max_blocks,
            prefill_cache_indices=prefill_cache_indices,
OlivierDehaene's avatar
OlivierDehaene committed
299
            speculative_ids=None,
300
301
302
        )


OlivierDehaene's avatar
OlivierDehaene committed
303
class BaseFlashMistral(FlashCausalLM):
304
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
305
306
307
        self,
        model_cls,
        model_id: str,
308
        config_cls=AutoConfig,
OlivierDehaene's avatar
OlivierDehaene committed
309
310
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
311
        use_medusa: Optional[str] = None,
OlivierDehaene's avatar
OlivierDehaene committed
312
313
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
314
        tokenizer_class=AutoTokenizer,
315
316
317
318
319
    ):
        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.float16 if dtype is None else dtype
320
321
322
        elif IS_XPU_SYSTEM:
            device = torch.device(f"xpu:{rank}")
            dtype = torch.float16 if dtype is None else dtype
323
        else:
OlivierDehaene's avatar
OlivierDehaene committed
324
            raise NotImplementedError("FlashMistral is only available on GPU")
325

326
327
328
329
330
331
332
        tokenizer = tokenizer_class.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )
333

OlivierDehaene's avatar
OlivierDehaene committed
334
        config = config_cls.from_pretrained(
335
336
337
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize
338
        config.use_medusa = use_medusa
339
340

        # Set context windows
341
        if getattr(config, "sliding_window", None) is not None:
OlivierDehaene's avatar
OlivierDehaene committed
342
343
344
            set_sliding_window(
                config.sliding_window, math.ceil(config.sliding_window / BLOCK_SIZE)
            )
345
346
        else:
            config.sliding_window = None
347
348
349
350
351
352

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        if config.quantize in ["gptq", "awq"]:
OlivierDehaene's avatar
OlivierDehaene committed
353
            weights._set_gptq_params(model_id, revision)
354

355
356
        prefix = ""
        model = model_cls(prefix, config, weights)
357

358
359
        self.cuda_graphs = {}

360
        torch.distributed.barrier(group=self.process_group)
361
362
        num_layers, num_kv_heads, head_size = self.get_layer_config(model)
        super().__init__(
363
364
            model=model,
            tokenizer=tokenizer,
365
366
367
            num_layers=num_layers,
            num_kv_heads=num_kv_heads,
            head_size=head_size,
368
369
370
371
372
373
374
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
            sliding_window=config.sliding_window,
        )

375
376
377
378
379
380
381
382
383
384
    def get_layer_config(self, model) -> Tuple[int, int, int]:
        return (
            len(model.model.layers),
            model.model.num_key_value_heads,
            model.model.head_size,
        )

    def max_past(self) -> int:
        return self.model.max_past

385
386
387
388
    @property
    def batch_type(self) -> Type[FlashMistralBatch]:
        return FlashMistralBatch

389
390
391
    def cuda_graph_warmup(self, bs: int, max_s: int, max_bt: int):
        input_ids = torch.zeros(bs, dtype=torch.int64, device=self.device)
        position_ids = torch.zeros(bs, dtype=torch.int32, device=self.device)
392
        slots = torch.arange(bs, dtype=torch.int64, device=self.device)
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
        input_lengths = torch.ones(bs, dtype=torch.int32, device=self.device) * max_s
        block_tables = (
            torch.arange(max_bt, dtype=torch.int32, device=self.device)
            .repeat(bs)
            .reshape((bs, max_bt))
        )
        kv_cache = get_cache_manager().kv_cache

        self.cuda_graphs[bs] = {
            "input_ids": input_ids,
            "position_ids": position_ids,
            "kv_cache": kv_cache,
            "block_tables": block_tables,
            "slots": slots,
            "input_lengths": input_lengths,
        }
        graph = torch.cuda.CUDAGraph()
        self.cuda_graphs[bs]["graph"] = graph

        torch.cuda.synchronize()
        # Run once outside to warmup
        self.model.forward(
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=None,
            kv_cache=kv_cache,
            block_tables=block_tables,
            slots=slots,
            input_lengths=input_lengths,
            max_s=max_s,
            prefill_cache_indices=None,
            lm_head_indices=None,
        )
        torch.cuda.synchronize()

        with torch.cuda.graph(graph, pool=MEM_POOL):
429
            logits, speculative_logits = self.model.forward(
430
431
432
433
434
435
436
437
438
439
440
                input_ids=input_ids,
                position_ids=position_ids,
                cu_seqlen_prefill=None,
                kv_cache=kv_cache,
                block_tables=block_tables,
                slots=slots,
                input_lengths=input_lengths,
                max_s=max_s,
                prefill_cache_indices=None,
                lm_head_indices=None,
            )
441
442
            self.cuda_graphs[bs]["logits"] = logits
            self.cuda_graphs[bs]["speculative_logits"] = speculative_logits
443
444
        torch.cuda.synchronize()

445
446
447
    def forward(
        self, batch: FlashMistralBatch
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor]]:
448
        # Model Forward
Nicolas Patry's avatar
Nicolas Patry committed
449
        if batch.speculative_ids is not None:
OlivierDehaene's avatar
OlivierDehaene committed
450
451
452
453
454
455
456
457
458
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
            kv_cache = get_cache_manager().kv_cache
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
Nicolas Patry's avatar
Nicolas Patry committed
459
460
461

            speculative_ids = batch.speculative_ids

OlivierDehaene's avatar
OlivierDehaene committed
462
            B, speculative_length = speculative_ids.shape
Nicolas Patry's avatar
Nicolas Patry committed
463
            new_length = speculative_length + 1
OlivierDehaene's avatar
OlivierDehaene committed
464
465
466
            new_input_ids = torch.cat(
                [input_ids.unsqueeze(-1), speculative_ids], dim=1
            ).reshape(-1)
Nicolas Patry's avatar
Nicolas Patry committed
467
468
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
OlivierDehaene's avatar
OlivierDehaene committed
469
470
471
            new_position_ids = (
                position_ids.unsqueeze(-1).expand(B, new_length) + arange
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
472
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
OlivierDehaene's avatar
OlivierDehaene committed
473
474
475
            input_lengths = (
                input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int
            ).view(-1)
Nicolas Patry's avatar
Nicolas Patry committed
476
477

            # Add Copy the block tables for all members
OlivierDehaene's avatar
OlivierDehaene committed
478
479
480
481
482
483
            block_tables = (
                block_tables.unsqueeze(1)
                .expand(B, new_length, -1)
                .reshape(B * new_length, -1)
                .contiguous()
            )
Nicolas Patry's avatar
Nicolas Patry committed
484
485
486
487
488
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
OlivierDehaene's avatar
OlivierDehaene committed
489
490
491
492
493
494
495
496
497
            input_ids = batch.input_ids
            position_ids = batch.position_ids
            cu_seqlen_prefill = batch.cu_seqlen_prefill
            kv_cache = get_cache_manager().kv_cache
            block_tables = batch.block_tables_tensor
            slots = batch.slots[batch.slot_indices]
            input_lengths = batch.input_lengths_tensor
            max_s = batch.max_seqlen
            lm_head_indices = batch.prefill_head_indices
498

499
        if cu_seqlen_prefill is None and self.max_past() is not None:
500
501
502
            # In decode, not prefill, we're actually overwriting the KV-cache
            # in a circular buffer mode.
            # This makes sure the max_s for the decode pass is correct.
503
            max_s = min(self.max_past(), max_s)
504
505
506
507
508
509
510
511
512
513
514
515
516
517

        bs = input_ids.shape[0]
        padded_bs = bs
        if bs == 3:
            padded_bs = 4
        elif 3 < bs <= 8:
            padded_bs = 8
        elif bs > 8:
            padded_bs = (bs + 7) // 8 * 8

        # Try to find an associated cuda graph
        cuda_graph = self.cuda_graphs.get(padded_bs, None)

        if cu_seqlen_prefill is not None or cuda_graph is None:
Nicolas Patry's avatar
Nicolas Patry committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

            if cu_seqlen_prefill is None:
                logits, speculative_logits = self.compiled_model(
                    input_ids=input_ids,
                    position_ids=position_ids,
                    cu_seqlen_prefill=cu_seqlen_prefill,
                    kv_cache=kv_cache,
                    block_tables=block_tables,
                    slots=slots,
                    input_lengths=input_lengths,
                    max_s=max_s,
                    prefill_cache_indices=batch.prefill_cache_indices,
                    lm_head_indices=lm_head_indices,
                )
            else:
                logits, speculative_logits = self.model.forward(
                    input_ids=input_ids,
                    position_ids=position_ids,
                    cu_seqlen_prefill=cu_seqlen_prefill,
                    kv_cache=kv_cache,
                    block_tables=block_tables,
                    slots=slots,
                    input_lengths=input_lengths,
                    max_s=max_s,
                    prefill_cache_indices=batch.prefill_cache_indices,
                    lm_head_indices=lm_head_indices,
                )
545
546
            if batch.prefill_cache_indices is not None:
                batch.prefill_cache_indices = None
547
            return logits, speculative_logits
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564

        # Copy inputs to the static inputs of the cuda graph
        # Static inputs are potentially padded
        cuda_graph["input_ids"][: input_ids.shape[0]] = input_ids
        cuda_graph["position_ids"][: position_ids.shape[0]] = position_ids
        cuda_graph["block_tables"][
            : block_tables.shape[0], : block_tables.shape[1]
        ] = block_tables
        cuda_graph["slots"].fill_(-1)
        cuda_graph["slots"][: slots.shape[0]] = slots
        cuda_graph["input_lengths"].zero_()
        cuda_graph["input_lengths"][: input_lengths.shape[0]] = input_lengths

        # Replay the graph
        cuda_graph["graph"].replay()

        # Slice output to the correct shape
565
566
567
568
569
570
571
        speculative_logits = (
            cuda_graph["speculative_logits"][:bs]
            if cuda_graph["speculative_logits"] is not None
            else None
        )
        logits = cuda_graph["logits"][:bs]
        return logits, speculative_logits
OlivierDehaene's avatar
OlivierDehaene committed
572
573
574
575


class FlashMistral(BaseFlashMistral):
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
576
577
578
579
        self,
        model_id: str,
        revision: Optional[str] = None,
        quantize: Optional[str] = None,
580
        use_medusa: Optional[str] = None,
OlivierDehaene's avatar
OlivierDehaene committed
581
582
        dtype: Optional[torch.dtype] = None,
        trust_remote_code: bool = False,
OlivierDehaene's avatar
OlivierDehaene committed
583
584
585
586
587
588
589
    ):
        super(FlashMistral, self).__init__(
            config_cls=MistralConfig,
            model_cls=FlashMistralForCausalLM,
            model_id=model_id,
            revision=revision,
            quantize=quantize,
590
            use_medusa=use_medusa,
OlivierDehaene's avatar
OlivierDehaene committed
591
            dtype=dtype,
OlivierDehaene's avatar
OlivierDehaene committed
592
            trust_remote_code=trust_remote_code,
OlivierDehaene's avatar
OlivierDehaene committed
593
        )