flash_mistral.py 15.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import math
import torch
import torch.distributed

import numpy as np

from dataclasses import dataclass
from opentelemetry import trace
from transformers import PreTrainedTokenizerBase
from transformers.models.llama import LlamaTokenizerFast
OlivierDehaene's avatar
OlivierDehaene committed
11
from typing import Optional, Tuple, Type, List
12
13
14
15
16
17
18
19
20
21
22

from text_generation_server.pb import generate_pb2
from text_generation_server.models import FlashCausalLM
from text_generation_server.models.flash_causal_lm import FlashCausalLMBatch, BLOCK_SIZE
from text_generation_server.models.cache_manager import (
    get_cache_manager,
)
from text_generation_server.models.custom_modeling.flash_mistral_modeling import (
    FlashMistralForCausalLM,
    MistralConfig,
)
Nicolas Patry's avatar
Nicolas Patry committed
23
from text_generation_server.utils.speculate import get_speculate
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from text_generation_server.utils import (
    initialize_torch_distributed,
    weight_files,
    Weights,
    HeterogeneousNextTokenChooser,
    StoppingCriteria,
)

tracer = trace.get_tracer(__name__)

# Will be set in init
SLIDING_WINDOW: Optional[int] = None
SLIDING_WINDOW_BLOCKS: Optional[int] = None


# Adds windowing logic to FlashCausalLMBatch
@dataclass
class FlashMistralBatch(FlashCausalLMBatch):
    # Prefill cache indices is used to slice into the kv tensor before caching it into the paged attention buffers
    # as we only keep SLIDING_WINDOW values instead of the whole tensor
    prefill_cache_indices: Optional[torch.Tensor] = None

    @classmethod
    def from_pb(
OlivierDehaene's avatar
OlivierDehaene committed
48
49
50
51
52
            cls,
            pb: generate_pb2.Batch,
            tokenizer: PreTrainedTokenizerBase,
            dtype: torch.dtype,
            device: torch.device,
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
    ) -> "FlashCausalLMBatch":
        global SLIDING_WINDOW
        global SLIDING_WINDOW_BLOCKS

        batch_inputs = []
        max_truncation = 0
        for r in pb.requests:
            batch_inputs.append(r.inputs)
            max_truncation = max(max_truncation, r.truncate)

        batch_tokenized_inputs = tokenizer(
            batch_inputs, truncation=True, max_length=max_truncation
        )["input_ids"]

        position_ids = []
        cu_seqlen_prefill = [0]
        needed_blocks_slots = []
        start_slots = []
        slot_indices = []
        prefill_cache_indices = []

        input_lengths = []
        prefix_offsets = []
        read_offsets = []
        all_input_ids = []
        requests_idx_mapping = {}

        all_prefill_logprobs = True
        no_prefill_logprobs = True
        prefill_head_indices = []
        prefill_next_token_indices = []
        prefill_cu_outlens = [0]

        next_token_chooser_parameters = []
        stopping_criterias = []
        top_n_tokens = []

        # Cumulative length
        cumulative_length = 0
        cumulative_max_length = 0
        prefill_out_cumulative_length = 0

        blocks = 0
        max_seqlen = 0
        max_length = 0
        max_blocks = 0

        # Parse batch
        for i, (r, tokenized_input) in enumerate(
OlivierDehaene's avatar
OlivierDehaene committed
102
                zip(pb.requests, batch_tokenized_inputs)
103
104
105
106
        ):
            # request id -> idx in list mapping
            requests_idx_mapping[r.id] = i

OlivierDehaene's avatar
OlivierDehaene committed
107
            tokenized_input = tokenized_input[-r.truncate:]
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

            input_length = len(tokenized_input)
            input_lengths.append(input_length)

            prefix_offsets.append(input_length - 5)
            read_offsets.append(input_length)

            all_input_ids.append(tokenized_input)

            # Position ids
            request_position_ids = torch.arange(0, input_length, dtype=torch.int32)
            position_ids.append(request_position_ids)

            # Add cumulative lengths of all previous inputs
            cu_seqlen_prefill.append(cumulative_length + input_length)

            next_token_chooser_parameters.append(r.parameters)

            stopping_criteria = StoppingCriteria.from_pb(
                r.stopping_parameters, tokenizer
            )
            max_new_tokens = stopping_criteria.max_new_tokens
            stopping_criterias.append(stopping_criteria)
            top_n_tokens.append(r.top_n_tokens)

            # Paged attention
            # Remove one as the first token des not have a past
Nicolas Patry's avatar
Nicolas Patry committed
135
136
            speculative_length = get_speculate()
            total_tokens = input_length + max_new_tokens - 1 + speculative_length
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186

            # Needed blocks can not go over SLIDING_WINDOW_BLOCKS
            needed_blocks = min(
                math.ceil(total_tokens / BLOCK_SIZE), SLIDING_WINDOW_BLOCKS
            )
            blocks += needed_blocks

            needed_blocks_slots.append((needed_blocks, total_tokens))
            start_slots.append(cumulative_max_length)

            request_slot_indices = torch.arange(
                cumulative_max_length,
                cumulative_max_length + input_length,
                dtype=torch.int64,
            )
            slot_indices.append(request_slot_indices)

            # Create tensor to slice into the kv tensor in prefill
            request_prefill_cache_indices = torch.arange(
                cumulative_length + max(0, input_length - SLIDING_WINDOW),
                cumulative_length + input_length,
                dtype=torch.int64,
            )
            prefill_cache_indices.append(request_prefill_cache_indices)

            all_prefill_logprobs = all_prefill_logprobs and r.prefill_logprobs
            no_prefill_logprobs = no_prefill_logprobs and not r.prefill_logprobs

            if r.prefill_logprobs:
                prefill_head_indices.append(request_position_ids + cumulative_length)
                prefill_next_token_indices.append(
                    prefill_out_cumulative_length + input_length - 1
                )
                prefill_cu_outlens.append(prefill_out_cumulative_length + input_length)
                prefill_out_cumulative_length += input_length
            else:
                prefill_head_indices.append(
                    torch.tensor(
                        [cumulative_length + input_length - 1], dtype=torch.int32
                    )
                )
                prefill_next_token_indices.append(prefill_out_cumulative_length)
                prefill_cu_outlens.append(prefill_out_cumulative_length + 1)
                prefill_out_cumulative_length += 1

            # Update
            cumulative_length += input_length
            cumulative_max_length += total_tokens
            max_seqlen = max(max_seqlen, input_length)
            max_blocks = max(max_blocks, needed_blocks)
Nicolas Patry's avatar
Nicolas Patry committed
187
            max_length = max(max_length, input_length + max_new_tokens + speculative_length)
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

        next_token_chooser = HeterogeneousNextTokenChooser.from_pb(
            next_token_chooser_parameters, dtype, device
        )
        start_slots = torch.tensor(start_slots, dtype=torch.int64)

        # Padded all_input_ids_tensor
        all_input_ids_tensor = np.zeros(
            (len(all_input_ids), max_length), dtype=np.int64
        )
        for i, input_ids in enumerate(all_input_ids):
            all_input_ids_tensor[i, : len(input_ids)] = input_ids

        # Create tensors on device
        all_input_ids_tensor = torch.tensor(
            all_input_ids_tensor, dtype=torch.int64, device=device
        )

        if len(pb.requests) > 1:
            input_ids = np.concatenate(all_input_ids, dtype=np.int64)
            position_ids = torch.cat(position_ids)
            slot_indices = torch.cat(slot_indices)
            prefill_cache_indices = torch.cat(prefill_cache_indices)
        else:
            input_ids = all_input_ids[0]
            position_ids = position_ids[0]
            slot_indices = slot_indices[0]
            prefill_cache_indices = prefill_cache_indices[0]

        cu_seqlen_prefill = torch.tensor(
            cu_seqlen_prefill, device=device, dtype=torch.int32
        )

        position_ids = position_ids.to(device)
        slot_indices = slot_indices.to(device)
        prefill_cache_indices = prefill_cache_indices.to(device)
        input_ids = torch.tensor(input_ids, dtype=torch.int64, device=device)
        input_lengths_tensor = torch.tensor(
            input_lengths, dtype=torch.int32, device=device
        )

        if all_prefill_logprobs:
            prefill_head_indices = None
            prefill_next_token_indices = cu_seqlen_prefill[1:] - 1
        elif no_prefill_logprobs:
            prefill_head_indices = cu_seqlen_prefill[1:] - 1
            prefill_next_token_indices = None
        else:
            prefill_head_indices = torch.tensor(
                torch.cat(prefill_head_indices), dtype=torch.int64, device=device
            )
            prefill_next_token_indices = torch.tensor(
                prefill_next_token_indices, dtype=torch.int64, device=device
            )
        top_n_tokens_tensor = torch.tensor(
            top_n_tokens, device=device, dtype=torch.int64
        )

        return cls(
            batch_id=pb.id,
            requests=pb.requests,
            requests_idx_mapping=requests_idx_mapping,
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=cu_seqlen_prefill,
            start_slots=start_slots,
            slot_indices=slot_indices,
            needed_blocks_slots=needed_blocks_slots,
            block_tables=None,
            block_tables_tensor=None,
            slots=None,
            max_seqlen=max_seqlen,
            prefill_head_indices=prefill_head_indices,
            prefill_next_token_indices=prefill_next_token_indices,
            prefill_cu_outlens=prefill_cu_outlens,
            input_lengths=input_lengths,
            input_lengths_tensor=input_lengths_tensor,
            prefix_offsets=prefix_offsets,
            read_offsets=read_offsets,
            all_input_ids=all_input_ids,
            all_input_ids_tensor=all_input_ids_tensor,
            next_token_chooser=next_token_chooser,
            stopping_criterias=stopping_criterias,
            top_n_tokens=top_n_tokens,
            top_n_tokens_tensor=top_n_tokens_tensor,
            blocks=blocks,
            max_blocks=max_blocks,
            prefill_cache_indices=prefill_cache_indices,
Nicolas Patry's avatar
Nicolas Patry committed
276
            speculative_ids=None
277
278
279
        )


OlivierDehaene's avatar
OlivierDehaene committed
280
class BaseFlashMistral(FlashCausalLM):
281
    def __init__(
OlivierDehaene's avatar
OlivierDehaene committed
282
283
284
285
286
287
288
289
            self,
            config_cls,
            model_cls,
            model_id: str,
            revision: Optional[str] = None,
            quantize: Optional[str] = None,
            dtype: Optional[torch.dtype] = None,
            trust_remote_code: bool = False,
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
    ):
        global SLIDING_WINDOW
        global SLIDING_WINDOW_BLOCKS

        self.process_group, rank, world_size = initialize_torch_distributed()
        if torch.cuda.is_available():
            device = torch.device(f"cuda:{rank}")
            dtype = torch.float16 if dtype is None else dtype
        else:
            raise NotImplementedError("FlashLlama is only available on GPU")

        tokenizer = LlamaTokenizerFast.from_pretrained(
            model_id,
            revision=revision,
            padding_side="left",
            truncation_side="left",
            trust_remote_code=trust_remote_code,
        )

OlivierDehaene's avatar
OlivierDehaene committed
309
        config = config_cls.from_pretrained(
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
            model_id, revision=revision, trust_remote_code=trust_remote_code
        )
        config.quantize = quantize

        # Set context windows
        SLIDING_WINDOW = config.sliding_window
        SLIDING_WINDOW_BLOCKS = math.ceil(config.sliding_window / BLOCK_SIZE)

        torch.distributed.barrier(group=self.process_group)

        filenames = weight_files(model_id, revision=revision, extension=".safetensors")
        weights = Weights(filenames, device, dtype, process_group=self.process_group)
        if config.quantize in ["gptq", "awq"]:
            weights._set_gptq_params(model_id)

OlivierDehaene's avatar
OlivierDehaene committed
325
        model = model_cls(config, weights)
326
327

        torch.distributed.barrier(group=self.process_group)
OlivierDehaene's avatar
OlivierDehaene committed
328
        super(BaseFlashMistral, self).__init__(
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
            model=model,
            tokenizer=tokenizer,
            num_layers=len(model.model.layers),
            num_kv_heads=model.model.num_key_value_heads,
            head_size=model.model.head_size,
            dtype=dtype,
            device=device,
            rank=rank,
            world_size=world_size,
            sliding_window=config.sliding_window,
        )

    @property
    def batch_type(self) -> Type[FlashMistralBatch]:
        return FlashMistralBatch

    def forward(self, batch: FlashMistralBatch) -> Tuple[torch.Tensor, torch.Tensor]:
        # Model Forward
Nicolas Patry's avatar
Nicolas Patry committed
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
        if batch.speculative_ids is not None:
            input_ids=batch.input_ids
            position_ids=batch.position_ids
            cu_seqlen_prefill=batch.cu_seqlen_prefill
            kv_cache=get_cache_manager().kv_cache
            block_tables=batch.block_tables_tensor
            slots=batch.slots[batch.slot_indices]
            input_lengths=batch.input_lengths_tensor
            max_s=batch.max_seqlen
            lm_head_indices=batch.prefill_head_indices

            speculative_ids = batch.speculative_ids

            B, speculative_length = speculative_ids.shape 
            new_length = speculative_length + 1
            new_input_ids = torch.cat([input_ids.unsqueeze(-1), speculative_ids], dim=1).reshape(-1)
            arange = torch.arange(new_length, device=position_ids.device).unsqueeze(0)
            arange_int = arange.to(dtype=torch.int32)
            new_position_ids = (position_ids.unsqueeze(-1).expand(B, new_length) + arange).view(-1)
            slots = (slots.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)
            input_lengths = (input_lengths.unsqueeze(-1).expand(B, new_length) + arange_int).view(-1)

            # Add Copy the block tables for all members
            block_tables = block_tables.unsqueeze(1).expand(B, new_length, -1).reshape(B* new_length, -1).contiguous()
            max_s = max_s + speculative_length

            input_ids = new_input_ids
            position_ids = new_position_ids
        else:
            input_ids=batch.input_ids
            position_ids=batch.position_ids
            cu_seqlen_prefill=batch.cu_seqlen_prefill
            kv_cache=get_cache_manager().kv_cache
            block_tables=batch.block_tables_tensor
            slots=batch.slots[batch.slot_indices]
            input_lengths=batch.input_lengths_tensor
            max_s=batch.max_seqlen
            lm_head_indices=batch.prefill_head_indices
385
        logits = self.model.forward(
Nicolas Patry's avatar
Nicolas Patry committed
386
387
388
389
390
391
392
393
            input_ids=input_ids,
            position_ids=position_ids,
            cu_seqlen_prefill=cu_seqlen_prefill,
            kv_cache=kv_cache,
            block_tables=block_tables,
            slots=slots,
            input_lengths=input_lengths,
            max_s=max_s,
394
            prefill_cache_indices=batch.prefill_cache_indices,
Nicolas Patry's avatar
Nicolas Patry committed
395
            lm_head_indices=lm_head_indices,
396
397
398
399
        )
        if batch.prefill_cache_indices is not None:
            batch.prefill_cache_indices = None
        return logits
OlivierDehaene's avatar
OlivierDehaene committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419


class FlashMistral(BaseFlashMistral):
    def __init__(
            self,
            model_id: str,
            revision: Optional[str] = None,
            quantize: Optional[str] = None,
            dtype: Optional[torch.dtype] = None,
            trust_remote_code: bool = False,
    ):
        super(FlashMistral, self).__init__(
            config_cls=MistralConfig,
            model_cls=FlashMistralForCausalLM,
            model_id=model_id,
            revision=revision,
            quantize=quantize,
            dtype=dtype,
            trust_remote_code=trust_remote_code
        )