cli.py 10.5 KB
Newer Older
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
1
import os
2
import sys
Olivier Dehaene's avatar
Olivier Dehaene committed
3
4
5
import typer

from pathlib import Path
6
from loguru import logger
7
from typing import Optional
8
from enum import Enum
9
from huggingface_hub import hf_hub_download
Olivier Dehaene's avatar
Olivier Dehaene committed
10
11
12
13
14


app = typer.Typer()


15
16
class Quantization(str, Enum):
    bitsandbytes = "bitsandbytes"
Nicolas Patry's avatar
Nicolas Patry committed
17
18
    bitsandbytes_nf4 = "bitsandbytes-nf4"
    bitsandbytes_fp4 = "bitsandbytes-fp4"
19
    gptq = "gptq"
20
    awq = "awq"
21
    eetq = "eetq"
Nicolas Patry's avatar
Nicolas Patry committed
22
    fp8 = "fp8"
23
24


25
26
27
28
29
class Dtype(str, Enum):
    float16 = "float16"
    bloat16 = "bfloat16"


Olivier Dehaene's avatar
Olivier Dehaene committed
30
@app.command()
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
31
def serve(
32
    model_id: str,
33
    revision: Optional[str] = None,
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
34
    sharded: bool = False,
35
    quantize: Optional[Quantization] = None,
Nicolas Patry's avatar
Nicolas Patry committed
36
    speculate: Optional[int] = None,
37
    dtype: Optional[Dtype] = None,
38
    trust_remote_code: bool = False,
39
    uds_path: Path = "/tmp/text-generation-server",
40
41
    logger_level: str = "INFO",
    json_output: bool = False,
42
    otlp_endpoint: Optional[str] = None,
Olivier Dehaene's avatar
Olivier Dehaene committed
43
):
Olivier Dehaene's avatar
v0.1.0  
Olivier Dehaene committed
44
45
46
47
48
49
50
51
52
53
54
55
56
57
    if sharded:
        assert (
            os.getenv("RANK", None) is not None
        ), "RANK must be set when sharded is True"
        assert (
            os.getenv("WORLD_SIZE", None) is not None
        ), "WORLD_SIZE must be set when sharded is True"
        assert (
            os.getenv("MASTER_ADDR", None) is not None
        ), "MASTER_ADDR must be set when sharded is True"
        assert (
            os.getenv("MASTER_PORT", None) is not None
        ), "MASTER_PORT must be set when sharded is True"

58
59
60
61
62
    # Remove default handler
    logger.remove()
    logger.add(
        sys.stdout,
        format="{message}",
63
        filter="text_generation_server",
64
65
66
67
68
        level=logger_level,
        serialize=json_output,
        backtrace=True,
        diagnose=False,
    )
69
70
71
72
73

    # Import here after the logger is added to log potential import exceptions
    from text_generation_server import server
    from text_generation_server.tracing import setup_tracing

74
75
76
77
    # Setup OpenTelemetry distributed tracing
    if otlp_endpoint is not None:
        setup_tracing(shard=os.getenv("RANK", 0), otlp_endpoint=otlp_endpoint)

78
79
    # Downgrade enum into str for easier management later on
    quantize = None if quantize is None else quantize.value
80
    dtype = None if dtype is None else dtype.value
OlivierDehaene's avatar
OlivierDehaene committed
81
82
83
84
85
86
    if dtype is not None and quantize not in {
        None,
        "bitsandbytes",
        "bitsandbytes-nf4",
        "bitsandbytes-fp4",
    }:
87
88
89
90
        raise RuntimeError(
            "Only 1 can be set between `dtype` and `quantize`, as they both decide how goes the final model."
        )
    server.serve(
OlivierDehaene's avatar
OlivierDehaene committed
91
92
93
94
95
96
97
98
        model_id,
        revision,
        sharded,
        quantize,
        speculate,
        dtype,
        trust_remote_code,
        uds_path,
99
    )
Olivier Dehaene's avatar
Olivier Dehaene committed
100
101
102


@app.command()
Nicolas Patry's avatar
Nicolas Patry committed
103
def download_weights(
104
    model_id: str,
105
    revision: Optional[str] = None,
106
    extension: str = ".safetensors",
107
    auto_convert: bool = True,
108
109
    logger_level: str = "INFO",
    json_output: bool = False,
110
    trust_remote_code: bool = False,
Olivier Dehaene's avatar
Olivier Dehaene committed
111
):
112
113
114
115
116
    # Remove default handler
    logger.remove()
    logger.add(
        sys.stdout,
        format="{message}",
117
        filter="text_generation_server",
118
119
120
121
122
123
        level=logger_level,
        serialize=json_output,
        backtrace=True,
        diagnose=False,
    )

124
125
126
    # Import here after the logger is added to log potential import exceptions
    from text_generation_server import utils

127
128
129
    # Test if files were already download
    try:
        utils.weight_files(model_id, revision, extension)
130
        logger.info("Files are already present on the host. " "Skipping download.")
131
132
        return
    # Local files not found
Nicolas Patry's avatar
Nicolas Patry committed
133
    except (utils.LocalEntryNotFoundError, FileNotFoundError, utils.EntryNotFoundError):
134
135
        pass

136
137
138
139
140
    is_local_model = (Path(model_id).exists() and Path(model_id).is_dir()) or os.getenv(
        "WEIGHTS_CACHE_OVERRIDE", None
    ) is not None

    if not is_local_model:
141
        try:
OlivierDehaene's avatar
OlivierDehaene committed
142
143
144
145
146
147
            adapter_config_filename = hf_hub_download(
                model_id, revision=revision, filename="adapter_config.json"
            )
            utils.download_and_unload_peft(
                model_id, revision, trust_remote_code=trust_remote_code
            )
148
149
150
            is_local_model = True
            utils.weight_files(model_id, revision, extension)
            return
151
152
153
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass

Nicolas Patry's avatar
Nicolas Patry committed
154
155
        try:
            import json
OlivierDehaene's avatar
OlivierDehaene committed
156
157

            medusa_head = hf_hub_download(
158
                model_id, revision=revision, filename="medusa_lm_head.safetensors"
OlivierDehaene's avatar
OlivierDehaene committed
159
160
161
162
            )
            medusa_config = hf_hub_download(
                model_id, revision=revision, filename="config.json"
            )
Nicolas Patry's avatar
Nicolas Patry committed
163
164
165
166
167
168
169
            with open(medusa_config, "r") as f:
                config = json.load(f)

            model_id = config["base_model_name_or_path"]
            revision = "main"
            try:
                utils.weight_files(model_id, revision, extension)
OlivierDehaene's avatar
OlivierDehaene committed
170
171
172
173
                logger.info(
                    f"Files for parent {model_id} are already present on the host. "
                    "Skipping download."
                )
Nicolas Patry's avatar
Nicolas Patry committed
174
175
                return
            # Local files not found
OlivierDehaene's avatar
OlivierDehaene committed
176
177
178
179
180
            except (
                utils.LocalEntryNotFoundError,
                FileNotFoundError,
                utils.EntryNotFoundError,
            ):
Nicolas Patry's avatar
Nicolas Patry committed
181
182
183
184
                pass
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass

185
186
187
188
189
190
191
192
193
194
195
196
197
        # Try to download weights from the hub
        try:
            filenames = utils.weight_hub_files(model_id, revision, extension)
            utils.download_weights(filenames, model_id, revision)
            # Successfully downloaded weights
            return

        # No weights found on the hub with this extension
        except utils.EntryNotFoundError as e:
            # Check if we want to automatically convert to safetensors or if we can use .bin weights instead
            if not extension == ".safetensors" or not auto_convert:
                raise e

198
    elif (Path(model_id) / "medusa_lm_head.safetensors").exists():
PYNing's avatar
PYNing committed
199
200
201
202
        # Try to load as a local Medusa model
        try:
            import json

203
            medusa_head = Path(model_id) / "medusa_lm_head.safetensors"
PYNing's avatar
PYNing committed
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
            medusa_config = Path(model_id) / "config.json"
            with open(medusa_config, "r") as f:
                config = json.load(f)

            model_id = config["base_model_name_or_path"]
            revision = "main"
            try:
                utils.weight_files(model_id, revision, extension)
                logger.info(
                    f"Files for parent {model_id} are already present on the host. "
                    "Skipping download."
                )
                return
            # Local files not found
            except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
                pass
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass
OlivierDehaene's avatar
OlivierDehaene committed
222

223
    elif (Path(model_id) / "adapter_config.json").exists():
224
225
226
227
228
229
230
231
232
233
        # Try to load as a local PEFT model
        try:
            utils.download_and_unload_peft(
                model_id, revision, trust_remote_code=trust_remote_code
            )
            utils.weight_files(model_id, revision, extension)
            return
        except (utils.LocalEntryNotFoundError, utils.EntryNotFoundError):
            pass

234
    # Try to see if there are local pytorch weights
235
    try:
236
237
        # Get weights for a local model, a hub cached model and inside the WEIGHTS_CACHE_OVERRIDE
        local_pt_files = utils.weight_files(model_id, revision, ".bin")
238

239
240
241
242
243
244
245
    # No local pytorch weights
    except utils.LocalEntryNotFoundError:
        if extension == ".safetensors":
            logger.warning(
                f"No safetensors weights found for model {model_id} at revision {revision}. "
                f"Downloading PyTorch weights."
            )
246

247
        # Try to see if there are pytorch weights on the hub
248
249
250
        pt_filenames = utils.weight_hub_files(model_id, revision, ".bin")
        # Download pytorch weights
        local_pt_files = utils.download_weights(pt_filenames, model_id, revision)
251
252

    if auto_convert:
253
254
255
256
257
258
259
        if not trust_remote_code:
            logger.warning(
                f"🚨🚨BREAKING CHANGE in 2.0🚨🚨: Safetensors conversion is disabled without `--trust-remote-code` because "
                f"Pickle files are unsafe and can essentially contain remote code execution!"
                f"Please check for more information here: https://huggingface.co/docs/text-generation-inference/basic_tutorials/safety",
            )

260
261
262
263
264
265
        logger.warning(
            f"No safetensors weights found for model {model_id} at revision {revision}. "
            f"Converting PyTorch weights to safetensors."
        )

        # Safetensors final filenames
266
267
268
269
        local_st_files = [
            p.parent / f"{p.stem.lstrip('pytorch_')}.safetensors"
            for p in local_pt_files
        ]
270
271
        try:
            import transformers
272
            import json
273

274
275
276
            if is_local_model:
                config_filename = os.path.join(model_id, "config.json")
            else:
OlivierDehaene's avatar
OlivierDehaene committed
277
278
279
                config_filename = hf_hub_download(
                    model_id, revision=revision, filename="config.json"
                )
280
281
282
            with open(config_filename, "r") as f:
                config = json.load(f)
            architecture = config["architectures"][0]
283
284
285
286
287
288
289
290

            class_ = getattr(transformers, architecture)

            # Name for this varible depends on transformers version.
            discard_names = getattr(class_, "_tied_weights_keys", [])

        except Exception as e:
            discard_names = []
291
        # Convert pytorch weights to safetensors
292
        utils.convert_files(local_pt_files, local_st_files, discard_names)
Olivier Dehaene's avatar
Olivier Dehaene committed
293
294


295
296
297
298
299
300
301
302
303
304
305
306
@app.command()
def quantize(
    model_id: str,
    output_dir: str,
    revision: Optional[str] = None,
    logger_level: str = "INFO",
    json_output: bool = False,
    trust_remote_code: bool = False,
    upload_to_model_id: Optional[str] = None,
    percdamp: float = 0.01,
    act_order: bool = False,
):
307
308
    if revision is None:
        revision = "main"
309
310
311
312
313
314
315
316
317
318
319
320
321
    download_weights(
        model_id=model_id,
        revision=revision,
        logger_level=logger_level,
        json_output=json_output,
    )
    from text_generation_server.utils.gptq.quantize import quantize

    quantize(
        model_id=model_id,
        bits=4,
        groupsize=128,
        output_dir=output_dir,
322
        revision=revision,
323
324
325
326
327
328
329
        trust_remote_code=trust_remote_code,
        upload_to_model_id=upload_to_model_id,
        percdamp=percdamp,
        act_order=act_order,
    )


Olivier Dehaene's avatar
Olivier Dehaene committed
330
331
if __name__ == "__main__":
    app()